Abstract
We apply proof mining methods to analyse a result of Boikanyo and Moroşanu on the strong convergence of a Halpern-type proximal point algorithm. As a consequence, we obtain quantitative versions of this result, providing uniform effective rates of asymptotic regularity and metastability.
This is a preview of subscription content, access via your institution.
References
Aoyama, K., Toyoda, M.: Approximation of zeros of accretive operators in a Banach space. Israel J. Math. 220, 803–816 (2017)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2nd edition). Springer, Berlin (2017)
Boikanyo, O.A., Moroşanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)
Boikanyo, O.A., Moroşanu, G.: Inexact Halpern-type proximal point algorithm. J. Glob. Optim. 51, 11–26 (2011)
Borwein, J., Reich, S., Shafrir, I.: Krasnoselski-Mann iterations in normed spaces. Can. Math. Bull. 35, 21–28 (1992)
Boţ, R.I., Csetnek, E.R., Meier, D.: Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces. Optim. Methods Softw. 34, 489–514 (2019)
Browder, F.E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 24, 82–90 (1967)
Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571–575 (1966)
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Ferreira, F., Leuştean, L., Pinto, P.: On the removal of weak compactness arguments in proof mining. Adv. Math. 354, 106728 (2019)
Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)
Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)
Kohlenbach, U.: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357, 89–128 (2005)
Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer, Berlin (2008)
Kohlenbach, U.: Proof-theoretic methods in nonlinear analysis. In: Sirakov, B., Ney de Souza, P., Viana, M. (eds.), Proceedings of ICM 2018, Vol. 2, pp. 61–82. World Scientific (2019)
Kohlenbach, U.: On quantitative versions of theorems due to F. E. Browder and R. Wittmann. Adv. Math. 226, 2764–2795 (2011)
Kohlenbach, U.: Local formalizations in nonlinear analysis and related areas and proof-theoretic tameness. In: Weingartner, P., Leeb, H.-P. (eds.), Kreisel’s Interests. On the Foundations of Logic and Mathematics, pp. 45–61. College Publications (2020)
Kohlenbach, U.: Quantitative analysis of a Halpern-type Proximal Point Algorithm for accretive operators in Banach spaces. J. Nonlinear Convex Anal. 21, 2125–2138 (2020)
Kohlenbach, U.: Quantitative results on the proximal point algorithm in uniformly convex Banach spaces. J. Convex Anal. 28, 11–18 (2021)
Kohlenbach, U., Leuştean, L.: Effective metastability of Halpern iterates in CAT(0) spaces. Adv. Math. 231, 2526–2556 (2012). Addendum in Adv. Math. 250, 650–651 (2014)
Kohlenbach, U., Leuştean, L., Nicolae, A.: Quantitative results on Fejér monotone sequences. Commun. Contemp. Math. 20, 1750015 (2018)
Kohlenbach, U., Sipoş, A.: The finitary content of sunny nonexpansive retractions. Commun. Contemp. Math. 23, 1950093 (2021)
Leuştean, L.: Rates of asymptotic regularity for Halpern iterations of nonexpansive mappings. J. Univ. Comput. Sci. 13, 1680–1691 (2007)
Leuştean, L., Nicolae, A.: Effective results on nonlinear ergodic averages in \(CAT(\kappa \)) spaces. Ergod. Theory Dyn. Syst. 36, 2580–2601 (2016)
Leuştean, L., Nicolae, A., Sipoş, A.: An abstract proximal point algorithm. J. Glob. Optim. 72, 553–577 (2018)
Leuştean, L., Sipoş, A.: An application of proof mining to the proximal point algorithm in CAT(0) spaces. In: Bellow, A., Calude, C., Zamfirescu, T. (eds.) Mathematics Almost Everywhere. In Memory of Solomon Marcus, pp. 153–168. World Scientific (2018)
Leuştean, L., Sipoş, A.: Effective strong convergence of the proximal point algorithm in CAT(0) spaces. J. Nonlinear Variational Anal. 2, 219–228 (2018)
Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Revue Française d’Informatique et de Recherche Opérationnelle 4, 154–158 (1970)
Neumann, E.: Computational problems in metric fixed point theory and their Weihrauch degrees. Log. Methods Comput. Sci. 11, 1–44 (2015)
Pinto, P.: A rate of metastability for the Halpern type Proximal Point Algorithm. arXiv:1912.12468 [math.FA] (2019)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. Ser. A 87, 189–202 (2000)
Tao, T.: Soft analysis, hard analysis, and the finite convergence principle (essay posted May 23, 2007). In: Tao,T. Structure and Randomness: Pages from Year One of a Mathematical Blog, pp. 77–87. American Mathematical Society (2008)
Tao, T.: Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Theory Dyn. Syst. 28, 657–688 (2008)
Walsh, M.: Norm convergence of nilpotent ergodic averages. Ann. Math. 175, 1667–1688 (2012)
Wang, Y., Wang, F., Xu, H.-K.: Error sensitivity for strongly convergent modifications of the proximal point algorithm. J. Optim. Theory Appl. 168, 901–916 (2016)
Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Archiv der Mathematik 58, 486–491 (1992)
Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Acknowledgements
Laurenţiu Leuştean was partially supported by a grant of the Romanian Ministry of Research and Innovation, Program 1 - Development of the National RDI System, Subprogram 1.2 - Institutional Performance - Projects for Funding the Excellence in RDI, Contract Number 15PFE/2018. Pedro Pinto acknowledges and is thankful for the financial support of: FCT - Fundação para a Ciência e a Tecnologia under the Project UID/MAT/04561/2019; the research center Centro de Matemática, Aplicações Fundamentais com Investigação Operacional, Universidade de Lisboa; and the ‘Future Talents’ short-term scholarship at Technische Universität Darmstadt. The paper also benefited from discussions with Fernando Ferreira and Ulrich Kohlenbach.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Leuştean, L., Pinto, P. Quantitative results on a Halpern-type proximal point algorithm. Comput Optim Appl 79, 101–125 (2021). https://doi.org/10.1007/s10589-021-00263-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-021-00263-w
Keywords
- Proximal point algorithm
- Maximally monotone operators
- Halpern iteration
- Rates of convergence
- Rates of metastability
- Proof mining