Skip to main content
Log in

Tensor Z-eigenvalue complementarity problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper studies tensor Z-eigenvalue complementarity problems. We formulate the tensor Z-eigenvalue complementarity problem as constrained polynomial optimization, and propose a semidefinite relaxation algorithm for solving the complementarity Z-eigenvalues of tensors. For every tensor that has finitely many complementarity Z-eigenvalues, we can compute all of them and show that our algorithm has the asymptotic and finite convergence. Numerical experiments indicate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, New York (1998)

    Book  Google Scholar 

  2. Chen, Z., Qi, L.: A semismooth Newton method for tensor eigenvalue complementarity problem. Comput. Opt. Appl. 65(1), 109–126 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z., Yang, Q., Ye, L.: Generalized eigenvalue complementarity problem for tensors. Mathematics 63(1), 1–26 (2015)

    Google Scholar 

  4. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

    Article  MathSciNet  Google Scholar 

  5. Curto, R.E., Fialkow, L.A.: Truncated K-moment problems in several variables. J. Oper. Theory 54(1), 189–226 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Fan, J., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Program Ser. A. 170, 507–539 (2018)

    Article  MathSciNet  Google Scholar 

  7. Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problems. Found. Comput. Math. 12(6), 851–881 (2012)

    Article  MathSciNet  Google Scholar 

  8. Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MathSciNet  Google Scholar 

  9. Hu, S., Qi, L.: Algebraic connectivity of an even uniform hypergraph. J. Combinatorial Optim. 24(4), 564–579 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  12. Lasserre, J.B.: Moments. Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    MATH  Google Scholar 

  13. Laurent, M.: Sums of squares moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

    Google Scholar 

  14. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing. CAMSAP05, IEEE Computer Society Press, Piscataway, pp 129–132. (2005)

  15. Li, W., Ng, M.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62(3), 362–385 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Ng, M., Ye, Y.: Finding stationary probability vector of a transition probability tensor arising from a higher-orderMarkov chain. Technical Report, Department of Mathematics, Hong Kong Baptist University (2011). http://www.math.hkbu.edu.hk/~mng/tensor-research/report1.pdf

  17. Martins, J.A.C., Pinto da Costa, A.: Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction. Int. J. Solids Struct. 37(18), 2519–2564 (2000)

    Article  MathSciNet  Google Scholar 

  18. Martins, J.A.C., Pinto da Costa, A.: Bifurcations and instabilities in frictional contact problems: theoretical relations, computational methods and numerical results. In: European Congress on Computational Methods in Applied Sciences and Engineering: ECCOMAS (2004)

  19. Nie, J.: Polynomial optimization with real varieties. SIAM J. Opt. 23(3), 1634–1646 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nie, J.: Certifying convergence of Lasserres hierarchy via flat truncation. Math. Program. 142, 485–510 (2013)

    Article  MathSciNet  Google Scholar 

  21. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Mathematical Program. 146(1–2), 97–121 (2014)

    Article  MathSciNet  Google Scholar 

  22. Nie, J., Zhang, X.: Real eigenvalues of nonsymmetric tensors. Comput. Opt. Appl. 70, 1–32 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ni, Q., Qi, L., Wang, F.: An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Autom. Control 53, 1096–1107 (2008)

    Article  Google Scholar 

  24. Pinto da Costa, A., Figueiredo, I.N., Martins, J.A.C.: A complementarity eigen problem in the stability analysis of finite dimensional elastic systems with frictional contact. In: Ferris, M., Pang, J.S., Mangasarian, O. (eds.) Complementarity Applications Algorithms and Extensions, pp. 67–83. Kluwer Academic, New York (2001)

    Chapter  Google Scholar 

  25. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  26. Qi, L.: Eigenvalues and invariants of tensors. J Math Anal Appl 325(2), 1363–1377 (2007)

    Article  MathSciNet  Google Scholar 

  27. Qi, L., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Global Optim. 26(4), 419–433 (2003)

    Article  MathSciNet  Google Scholar 

  28. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  29. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3(3), 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  30. Sturm, J., SeDuMi, F.: A MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–65 (1999)

    Article  Google Scholar 

  31. Zhou, G.L., Qi, L., Wu, S.Y.: Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Frontiners of Mathematics in China, SP Higher Education Press 8(1), 155–168 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to School of Mathematical Sciences, Shanghai Jiao Tong University for its support and help. The author would like to thank the associate editor and two anonymous referees for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meilan Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Science and Technology Foundation of the Department of Education of Hubei Province (B2020151) and the University-Industry Collaborative Education Program (201901032002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M. Tensor Z-eigenvalue complementarity problems. Comput Optim Appl 78, 559–573 (2021). https://doi.org/10.1007/s10589-020-00248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00248-1

Keywords

Mathematics Subject Classification

Navigation