Skip to main content
Log in

On the convergence of steepest descent methods for multiobjective optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider the classical unconstrained nonlinear multiobjective optimization problem. For such a problem, it is particularly interesting to compute as many points as possible in an effort to approximate the so-called Pareto front. Consequently, to solve the problem we define an “a posteriori” algorithm whose generic iterate is represented by a set of points rather than by a single one. The proposed algorithm takes advantage of a linesearch with extrapolation along steepest descent directions with respect to (possibly not all of) the objective functions. The sequence of sets of points produced by the algorithm defines a set of “linked” sequences of points. We show that each linked sequence admits at least one limit point (not necessarily distinct from those obtained by other sequences) and that every limit point is Pareto-stationary. We also report numerical results on a collection of multiobjective problems that show efficiency of the proposed approach over more classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A, Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Biscani, F., Izzo, D., Hong, Y.C.: A global optimisation toolbox for massively parallel engineering optimisation. arXiv preprint arXiv:1004.3824 (2010)

  3. Cocchi, G., Liuzzi, G., Papini, A., Sciandrone, M.: An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints. Comput. Optim. Appl. 69(2), 267–296 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective optimization. SIAM J. Optim. 21(3), 1109–1140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deb, K., Mohan, M., Mishra, S.: Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drummond, L.M.G., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Program. 111(1), 201–216 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Drummond, L.M.G., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19(4), 1694–1718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fliege, J., Drummond, L.M.G., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fliege, J., Vaz, A.I.F.: A method for constrained multiobjective optimization based on SQP techniques. SIAM J. Optim. 26(4), 2091–2119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gen, M., Cheng, R., Lin, L.: Multiobjective Genetic Algorithms, pp. 1–47. Springer, Berlin (2008)

    Google Scholar 

  15. Jahn, J.: Scalarization in vector optimization. Math. Program. 29(2), 203–218 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. LLC Gurobi Optimization. Gurobi Optimizer Reference Manual (2018)

  17. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained multiobjective nonsmooth optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Povalej, I.: Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–777 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S: Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition. (2008). https://esa.github.io/pagmo2/docs/cpp/problems/cec2009.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Liuzzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocchi, G., Liuzzi, G., Lucidi, S. et al. On the convergence of steepest descent methods for multiobjective optimization. Comput Optim Appl 77, 1–27 (2020). https://doi.org/10.1007/s10589-020-00192-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00192-0

Keywords

Mathematics Subject Classification

Navigation