Abstract
We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to be NP-complete even on trees. In order to obtain a tractable problem, we introduce a method for generating a finite scenario set such that optimality of a sizing for this finite set implies the sizing’s optimality for the originally given infinite set of scenarios. We further prove that the size of the finite scenario set is quadratically bounded above in the number of nodes of the underlying tree and that it can be computed in polynomial time. The resulting problem can then be solved as a standard mixed-integer linear optimization problem. Finally, we show the applicability of our theoretical results by computing globally optimal arc sizes for a realistic hydrogen transport network of Eastern Germany.
This is a preview of subscription content, access via your institution.





References
Afshar, M.H., Mariño, M.A.: A parameter-free self-adapting boundary genetic search for pipe network optimization. Comput. Optim. Appl. 37(1), 83–102 (2007). https://doi.org/10.1007/s10589-007-9016-1
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc., Upper Saddle River (1993)
Altın, A., Amaldi, E., Belotti, P., Pınar, M.Ç.: Provisioning virtual private networks under traffic uncertainty. Networks 49(1), 100–115 (2007). https://doi.org/10.1002/net.20145
Andre, J., Bonnans, F., Cornibert, L.: Optimization of capacity expansion planning for gas transportation networks. Eur. J. Oper. Res. 197(3), 1019–1027 (2009). https://doi.org/10.1016/j.ejor.2007.12.045
Ben-Ameur, W., Kerivin, H.: Routing of uncertain traffic demands. Optim. Eng. 6(3), 283–313 (2005). https://doi.org/10.1007/s11081-005-1741-7
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton. http://press.princeton.edu/titles/9099.html (2009). Accessed 8 Mar 2019
Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: Water Network Design by MINLP. Technical Report (2008). IBM Research Division, RC24495 (W0802-056)
Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13(2), 219–246 (2012). https://doi.org/10.1007/s11081-011-9141-7
Bragalli, C., D’Ambrosio, C., Lee, J., Lodi, A., Toth, P.: An MINLP solution method for a water network problem. In: Azar, Y., Erlebach, T. (eds.) Algorithms - ESA 2006, Lecture Notes in Computer Science, vol. 4168, pp. 696–707. Springer, Berlin (2006). https://doi.org/10.1007/11841036_62
Cacchiani, V., Jünger, M., Liers, F., Lodi, A., Schmidt, D.R.: Single-commodity robust network design with finite and Hose demand sets. Math. Program. 157, 297–342 (2016). https://doi.org/10.1007/s10107-016-0991-9
Collins, M., Cooper, L., Helgason, R., Kennington, J., LeBlanc, L.: Solving the pipe network analysis problem using optimization techniques. Manag. Sci. 24(7), 747–760 (1978). https://doi.org/10.1287/mnsc.24.7.747
Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., van der Merive, J.E.: A flexible model for resource management in virtual private networks. SIGCOMM Comput. Commun. Rev. 29(4), 95–108 (1999). https://doi.org/10.1145/316194.316209
Erlebach, T., Ruegg, M.: Optimal bandwidth reservation in hose-model VPNs with multi-path routing. In: 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2004, vol. 4, pp. 2275–2282. IEEE (2004). https://doi.org/10.1109/INFCOM.2004.1354650
Fingerhut, J., Suri, S., Turner, J.S.: Designing least-cost nonblocking broadband networks. J. Algorithms 24(2), 287–309 (1997). https://doi.org/10.1006/jagm.1997.0866
Fügenschuh, A., Geißler, B., Gollmer, R., Morsi, A., Rövekamp, J., Schmidt, M., Spreckelsen, K., Steinbach, M.C.: Chapter 2: physical and Technical Fundamentals of Gas Networks, pp. 17–43. Society for Industrial and Applied Mathematics, Philadelphia (2015). https://doi.org/10.1137/1.9781611973693.ch2
Groß, M., Pfetsch, M.E., Schewe, L., Schmidt, M., Skutella, M.: Algorithmic results for potential-based flows: easy and hard cases. Networks 73(3), 306–324 (2018). https://doi.org/10.1002/net.21865
Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.com (2017). Accessed 8 Mar 2019
Hansen, C.T., Madsen, K., Nielsen, H.B.: Optimization of pipe networks. Math. Program. 52(1), 45–58 (1991). https://doi.org/10.1007/BF01582879
Hart, W.E., Laird, C., Watson, J.P., Woodruff, D.L.: Pyomo-Optimization Modeling in Python, vol. 67. Springer, Boston, MA (2012). https://doi.org/10.1007/978-1-4614-3226-5
Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in python. Math. Program. Comput. 3, 219–260 (2011). https://doi.org/10.1007/s12532-011-0026-8
Humpola, J., Fügenschuh, A.: Convex reformulations for solving a nonlinear network design problem. Comput. Optim. Appl. 62(3), 717–759 (2015). https://doi.org/10.1007/s10589-015-9756-2
Koch, T., Hiller, B., Pfetsch, M., Schewe, L. (eds.): Evaluating Gas Network Capacities. Society for Industrial and Applied Mathematics, Philadelphia (2015). https://doi.org/10.1137/1.9781611973693
Mischner, J., Fasold, H., Kadner, K.: gas2energy.net: Systemplanung in der Gasversorgung; gaswirtschaftliche Grundlagen. Edition gwf, Gas, Erdgas. Oldenbourg Industrieverl. (2011)
Raghunathan, A.U.: Global optimization of nonlinear network design. SIAM J. Optim. 23(1), 268–295 (2013). https://doi.org/10.1137/110827387
Reuss, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., Stolten, D.: Seasonal storage and alternative carriers: a flexible hydrogen supply chain architecture model. Appl. Energy 200, 290–302 (2017). https://doi.org/10.1016/j.apenergy.2017.05.050
Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, E.A.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117(1), 217–234 (2002). https://doi.org/10.1023/A:1021529709006
Robinius, M.: Strom- und Gasmarktdesign zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff. Ph. D. Thesis, RWTH Aachen University (2015)
Robinius, M., Otto, A., Syranidis, K., Ryberg, D., Heuser, P., Welder, L., Grube, T., Markewitz, P., Tietze, V., Stolten, D.: Linking the power and transport sectors–part 2: modelling a sector coupling scenario for germany. Energies (2017). https://doi.org/10.3390/en10070957
Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015). https://doi.org/10.1016/j.apenergy.2015.03.017
Shiono, N., Suzuki, H.: Optimal pipe-sizing problem of tree-shaped gas distribution networks. Eur. J. Oper. Res. 252, 550–560 (2016). https://doi.org/10.1016/j.ejor.2016.01.008
Syranidis, K., Robinius, M., Stolten, D.: Control techniques and the modeling of electrical power flow across transmission networks. Renew. Sustain. Energy Rev. 82, 3452–3467 (2018). https://doi.org/10.1016/j.rser.2017.10.110
Szabó, J.: The set of solutions to nomination validation in passive gas transportation networks with a generalized flow formula. Technical Report, pp. 11–44, ZIB, Takustr.7, 14195 Berlin (2012). www.nbn-resolving.de/urn:nbn:de:0297-zib-15151
Vuffray, M., Misra, S., Chertkov, M.: Monotonicity of dissipative flow networks renders robust maximum profit problem tractable: general analysis and application to natural gas flows. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 4571–4578 (2015). https://doi.org/10.1109/CDC.2015.7402933
Welder, L., Ryberg, D.S., Kotzur, L., Grube, T., Robinius, M., Stolten, D.: Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany. Energy 158, 1130–1149 (2018). https://doi.org/10.1016/j.energy.2018.05.059
Weymouth, T.R.: Problems in natural gas engineering. Trans. Am. Soc. Mech. Eng. 34(1349), 185–231 (1912)
Yates, D., Templeman, A., Boffey, T.: The computational complexity of the problem of determining least capital cost designs for water supply networks. Eng. Optimiz. 7(2), 143–155 (1984). https://doi.org/10.1080/03052158408960635
Acknowledgements
The authors thank the Deutsche Forschungsgemeinschaft for their support within Projects A05, B07, and B08 in the Sonderforschungsbereich/Transregio 154 “Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks”. This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government and by the Emerging Field Initiative (EFI) of the Friedrich-Alexander-Universität Erlangen-Nürnberg through the project “Sustainable Business Models in Energy Markets”. Furthermore, this work has been supported by the Helmholtz Association under the Joint Initiative “EnergySystem 2050—A Contribution of the Research Field Energy”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Robinius, M., Schewe, L., Schmidt, M. et al. Robust optimal discrete arc sizing for tree-shaped potential networks. Comput Optim Appl 73, 791–819 (2019). https://doi.org/10.1007/s10589-019-00085-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-019-00085-x
Keywords
- Discrete arc sizing
- Network design
- Potential networks
- Scenario generation
- Robust optimization
- Mixed-integer linear optimization
Mathematics Subject Classification
- 90-08
- 90B10
- 90C11
- 90C35
- 90C90