Alber, M., Meedt, G., Nusslin, F., Reemtsen, R.: On the degeneracy of the IMRT optimization problem. Med. Phys. 29(11), 2584–2589 (2002)
Article
Google Scholar
Antoniadis, A., Gijbels, I., Nikolova, M.: Penalized likelihood regression for generalized linear models with non-quadratic penalties. Ann. Inst. Stat. Math. 63(3), 585–615 (2011)
MathSciNet
Article
Google Scholar
Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and legendre functions in banach spaces. Commun. Contemp. Math. 3(04), 615–647 (2001)
MathSciNet
Article
Google Scholar
Becker, M.P., Yang, I., Lange, K.: EM algorithms without missing data. Stat. Methods Med. Res. 6, 38–54 (1997)
Article
Google Scholar
Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Comput. Chem. Eng. 33(3), 575–582 (2009)
Article
Google Scholar
Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)
MathSciNet
Article
Google Scholar
Byrne, C.L.: Iterative image reconstruction algorithms based on cross-entropy minimization. IEEE Trans. Image Process. 2(1), 96–103 (1993)
Article
Google Scholar
Byrne, C.L.: Iterative projection onto convex sets using multiple Bregman distances. Inverse Probl. 15(5), 1295 (1999)
MathSciNet
Article
Google Scholar
Byrne, C.L.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)
MathSciNet
Article
Google Scholar
Byrne, C.L.: Sequential unconstrained minimization algorithms for constrained optimization. Inverse Probl. 24(1), 015013 (2008)
MathSciNet
Article
Google Scholar
Byrne, C.L.: Alternating minimization as sequential unconstrained minimization: a survey. J. Optim. Theory Appl. 156(3), 554–566 (2013)
MathSciNet
Article
Google Scholar
Byrne, C.L.: An elementary proof of convergence for the forward-backward splitting algorithm. J. Nonlinear Convex Anal. 15(4), 681–691 (2014)
MathSciNet
MATH
Google Scholar
Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165(2), 385–404 (2015)
MathSciNet
Article
Google Scholar
Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)
MathSciNet
Article
Google Scholar
Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Univ. Ovidius Constanta Ser. Mat. 23(3), 41–54 (2015)
MathSciNet
Article
Google Scholar
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51(10), 2353 (2006)
Article
Google Scholar
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)
MathSciNet
Article
Google Scholar
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21(6), 2071–2084 (2005)
MathSciNet
Article
Google Scholar
Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)
MathSciNet
Article
Google Scholar
Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 327(2), 1244–1256 (2007)
MathSciNet
Article
Google Scholar
Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press on Demand, Oxford (1997)
MATH
Google Scholar
Chi, E.C., Lange, K.: A look at the generalized heron problem through the lens of majorization–minimization. Am. Math. Mon. 121(2), 95–108 (2014)
MathSciNet
Article
Google Scholar
Chi, E.C., Zhou, H., Lange, K.: Distance majorization and its applications. Math. Program. Ser. A 146(1–2), 409–436 (2014)
MathSciNet
Article
Google Scholar
Combettes, P.L.: Inconsistent signal feasibility problems: least-squares solutions in a product space. IEEE Trans. Signal Process. 42(11), 2955–2966 (1994)
Article
Google Scholar
Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)
MathSciNet
Article
Google Scholar
Combettes, P.L., Bondon, P.: Hard-constrained inconsistent signal feasibility problems. IEEE Trans. Signal Process. 47(9), 2460–2468 (1999)
Article
Google Scholar
Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
MathSciNet
Article
Google Scholar
Craft, D., Bangert, M., Long, T., Papp, D., Unkelbach, J.: Shared data for intensity modulated radiation therapy (IMRT) optimization research: the CORT dataset. GigaSci. 3(1), 37 (2014)
Article
Google Scholar
Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Chapter 1. Introduction to compressed sensing. Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)
Google Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)
MathSciNet
MATH
Google Scholar
Dingping, W., Qibin, D., Erli, W., Hang, Z.: The Split Feasibility Problem in Hilbert Space, pp. 1149–1154. Springer, Berlin (2013)
Google Scholar
Ehrgott, M., Güler, c, Hamacher, H.W., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. Ann. Oper. Res. 175(1), 309–365 (2010)
MathSciNet
Article
Google Scholar
Fan, J., Lv, J.: A selective overview of variable selection in high dimensional feature space. Stat. Sin. 20(1), 101 (2010)
MathSciNet
MATH
Google Scholar
Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the \(\beta \)-divergence. Neural Comput. 23(9), 2421–2456 (2011)
MathSciNet
Article
Google Scholar
Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Classics in Applied Mathematics. SIAM, PA (1990)
Book
Google Scholar
Gibali, A., Küfer, K., Süss, P.: Successive linear programing approach for solving the nonlinear split feasibility problem. J. Nonlinear Convex Anal. 15(2), 345–353 (2014)
MathSciNet
Google Scholar
Gibali, A., Küfer, K.-H., Reem, D., Süss, P.: A generalized projection-based scheme for solving convex constrained optimization problems. Comput. Optim. Appl. 70(3), 737–762 (2018)
MathSciNet
Article
Google Scholar
Goldstein, T., Studer, C., Baraniuk, R.: A field guide to forward-backward splitting with a FASTA implementation. arXiv:1411.3406 [cs.NA] (2014)
Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)
Article
Google Scholar
Hou, Q., Wang, J., Chen, Y., Galvin, J.M.: An optimization algorithm for intensity modulated radiotherapy-the simulated dynamics with dose-volume constraints. Med. Phys. 30(1), 61–68 (2003)
Article
Google Scholar
Lange, K.: A gradient algorithm locally equivalent to the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 57(2), 425–437 (1995)
MathSciNet
MATH
Google Scholar
Lange, K.: Numerical Analysis for Statisticians. Statistics and Computing, 2nd edn. Springer, New York (2010)
Book
Google Scholar
Lange, K.: Optimization. Springer Texts in Statistics, 2nd edn. Springer, New York (2013)
Google Scholar
Lange, K.: MM Optimization Algorithms. SIAM, PA (2016)
Book
Google Scholar
Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions (with discussion). J. Comput. Gr. Stat. 9, 1–20 (2000)
Google Scholar
Li, Z., Han, D., Zhang, W.: A self-adaptive projection-type method for nonlinear multiple-sets split feasibility problem. Inverse Probl. Sci. Eng. 21(1), 155–170 (2013)
MathSciNet
Article
Google Scholar
Llacer, J., Deasy, J.O., Bortfeld, T.R., Solberg, T.D., Promberger, C.: Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys. Med. Biol. 48(2), 183 (2003)
Article
Google Scholar
Lorenz, D.A., Schöpfer, F., Wenger, S.: The linearized Bregman method via split feasibility problems: analysis and generalizations. SIAM J. Imaging Sci. 7(2), 1237–1262 (2014)
MathSciNet
Article
Google Scholar
Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. International series in operations research & management science, volume 228, 4th edn. Springer, New York (2016)
Book
Google Scholar
Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8(3), 367–371 (2007)
MathSciNet
MATH
Google Scholar
McCullagh, P., Nelder, J.A.: Generalized Linear Models, vol. 37. CRC press, Boca Raton (1989)
Book
Google Scholar
Mordukhovich, B.S., Nam, N.M.: Applications of variational analysis to a generalized Fermat–Torricelli problem. J. Optim. Theory Appl. 148, 431–454 (2011)
MathSciNet
Article
Google Scholar
Mordukhovich, B.S., Nam, N.M., Salinas, J.: Applications of variational analysis to a generalized Heron problem. Appl. Anal. 91(10), 1915–1942 (2011)
MathSciNet
Article
Google Scholar
Mordukhovich, B.S., Nam, N.M., Salinas, J.: Solving a generalized Heron problem by means of convex analysis. Am. Math. Mon. 119(2), 87–99 (2012)
MathSciNet
Article
Google Scholar
Moré, J.J.: The Levenberg–Marquardt algorithm: implementation and theory. In: Numerical analysis, pp. 105–116. Springer (1978)
Moudafi, A.: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. Theory Methods Appl. 74(12), 4083–4087 (2011)
MathSciNet
Article
Google Scholar
Murty, K.G., Yu, F.-T.: Linear Complementarity, Linear and Nonlinear Programming, vol. 3. Citeseer, Heldermann, Berlin (1988)
MATH
Google Scholar
Palta, J.R., Mackie, T.R. (eds.): Intensity-Modulated Radiation Therapy: The State of The Art. Medical Physics Publishing, Madison (2003)
Google Scholar
Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(4), 659–677 (2007)
MathSciNet
Article
Google Scholar
Polson, N.G., Scott, J.G., Willard, B.T.: Proximal algorithms in statistics and machine learning. Stat. Sci. 30(4), 559–581 (2015)
MathSciNet
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna (2017)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, New York (1998)
Book
Google Scholar
Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev. 41(4), 721–744 (1999)
Article
Google Scholar
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)
MathSciNet
MATH
Google Scholar
Wang, F., Xu, H.-K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 74(12), 4105–4111 (2011)
MathSciNet
Article
Google Scholar
Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)
MathSciNet
Article
Google Scholar
Xu, H.-K.: A variable Krasnosel’skii Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021–2034 (2006)
Article
Google Scholar
Xu, H.-K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(10), 105018 (2010)
MathSciNet
Article
Google Scholar
Xu, J., Chi, E., Lange, K.: Generalized linear model regression under distance-to-set penalties. In: Advances in Neural Information Processing Systems, pp. 1385–1395 (2017)
Zhang, X., Liu, H., Wang, X., Dong, L., Wu, Q., Mohan, R.: Speed and convergence properties of gradient algorithms for optimization of IMRT. Med. Phy. 31(5), 1141–1152 (2004)
Article
Google Scholar
Zhou, H., Alexander, D., Lange, K.: A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat. Comput. 21, 261–273 (2011)
MathSciNet
Article
Google Scholar
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Methodol.) 67(2), 301–320 (2005)
MathSciNet
Article
Google Scholar