Computational Optimization and Applications

, Volume 68, Issue 3, pp 473–478 | Cite as

COAP 2016 Best Paper prize

Article
  • 145 Downloads

References

  1. 1.
    Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., Salvagnin, D.: On handling indicator constraints in mixed integer programming. Comput. Optim. Appl. 65(3), 545–566 (2016)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bertsimas, D.: Statistics and machine learning via a modern optimization lens. INFORMS, The 2014–2015 Philip McCord Morse Lecture, pp. 1–42 (2014)Google Scholar
  4. 4.
    Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program. 151(1), 191–223 (2015)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Brooks, J.: Support vector machines with the ramp loss and the hard margin loss. Oper. Res. 59(2), 467–479 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3), 595–614 (1999)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J. 59(9), 3276–3295 (2013)CrossRefGoogle Scholar
  8. 8.
    Shen, X., Tseng, G., Zhang, X., Wong, W.: On \(\psi \)-learning. J. Am. Stat. Assoc. 98(463), 724–734 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., Steinberg, D., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Personalised recommendations