Skip to main content
Log in

A new method for interpolating in a convex subset of a Hilbert space

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, interpolating curve or surface with linear inequality constraints is considered as a general convex optimization problem in a Reproducing Kernel Hilbert Space. The aim of the present paper is to propose an approximation method in a very general framework based on a discretized optimization problem in a finite-dimensional Hilbert space under the same set of constraints. We prove that the approximate solution converges uniformly to the optimal constrained interpolating function. Numerical examples are provided to illustrate this result in the case of boundedness and monotonicity constraints in one and two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Andersson, L., Elfving, T.: Interpolation and approximation by monotone cubic splines. J. Approx. Theory 66(3), 302–333 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bay, X., Grammont, L., Maatouk, H.: Generalization of the Kimeldorf–Wahba Correspondence for Constrained Interpolation. Electron. J. Stat. 10(1), 1580–1595 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  6. Dontchev, A.L., Qi, H., Qi, L.: Convergence of Newton’s method for convex best interpolation. Numer. Math. 87(3), 435–456 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dougherty, R.L., Edelman, A., Hyman, J.M.: Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 52(186), 471–494 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fritsch, F., Carlson, R.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27(1), 1–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hyman, J.M.: Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Comput. 4(4), 645–654 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kimeldorf, G.S., Wahba, G.: A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41(2), 495–502 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laurent, P.J.: An algorithm for the computation of spline functions with inequality constraints. Séminaire d’analyse numérique de Grenoble, No. 335. Grenoble (1980)

  13. Mhaskar, H., Pai, D.: Fundamentals of Approximation Theory. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  14. Micchelli, C., Utreras, F.: Smoothing and interpolation in a convex subset of a hilbert space. SIAM J. Sci. Stat. Comput. 9(4), 728–746 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nair, M.: Linear Operator Equations: Approximation and Regularization. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  16. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)

    Google Scholar 

  17. Utreras, F., Varas, M.L.: Monotone interpolation of scattered data in \({\mathbb{R}}^s\). Constr. Approx. 7, 49–68 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Utreras, F.I.: Convergence rates for monotone cubic spline interpolation. J. Approx. Theory 36(1), 86–90 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wahba, G.: Spline Models for Observational Data, vol. 59. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  20. Wolberg, G., Alfy, I.: Monotonic cubic spline interpolation. In: Proceedings of Computer Graphics International, pp. 188–195 (1999)

  21. Yin, H., Wang, Y., Qi, L.: Shape-preserving interpolation and smoothing for options market implied volatility. J. Optim. Theory Appl. 142(1), 243–266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and the two anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Maatouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bay, X., Grammont, L. & Maatouk, H. A new method for interpolating in a convex subset of a Hilbert space. Comput Optim Appl 68, 95–120 (2017). https://doi.org/10.1007/s10589-017-9906-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9906-9

Keywords

Navigation