Skip to main content
Log in

Second-order orthant-based methods with enriched Hessian information for sparse \(\ell _1\)-optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing \(\ell _1\)-norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the \(\ell _1\)-norm. The weak second order information behind the \(\ell _1\)-term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrew, G., Gao, J.: Scalable training of \(\ell _1\)—regularized log-linear models. In: Proceedings of the Twenty Fourth Conference on Machine Learning (ICML), (2007)

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrd, R., Chin, G., Nocedal, J., Wu, Y.: Sample size selection in optimization methods for machine learning. Math. Program. 134(1), 127–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrd, R., Chin, G.M., Nocedal, J., Oztoprak, F.: A family of second-order methods for convex \(\ell _1\)-regularized optimization. Math. Program. 159(1), 435–467 (2016)

  5. Casas, E., Ryll, C., Tröltzsch, F.: Sparse optimal control of the Schlögl and Fitzhugh–Nagumo systems. Comput. Methods Appl. Math. 13(4), 415–442 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward–backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.: Linear and nonlinear functional analysis with applications. SIAM, Philadelphia (2013)

  8. Collins, M., Koo, T.: Discriminative reranking for natural language parsing. Comput. Linguist. 31(1), 25–70 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. De los Reyes, J.C.: Numerical PDE-Constrained Optimization. Springer, New York (2015)

    MATH  Google Scholar 

  10. De Santis, M., Lucidi, S., Rinaldi, F.: A fast active set block coordinate descent algorithm for \(l_1\)-regularized least squares. SIAM J. Optim. 26(1), 781–809 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems, Vols I and II. Springer, Berlin (2003)

    MATH  Google Scholar 

  12. Fountoulakis, K., Gondzio, J.: A second-order method for strongly convex \(\ell _1\)-regularization problems. Math. Program. 156(1), 189–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, H., Ng, M.K., Nikolova, M., Barlow, J.L.: Efficient minimization methods of mixed \(\ell _2\)-\(\ell _1\) and \(\ell _1\)-\(\ell _1\) norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)

    Article  MathSciNet  Google Scholar 

  14. Geiger, C., Kanzow, C.: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  15. Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurdyka, Krzysztof, Parusinski, Adam: Wf-stratification of subanalytic functions and the lojasiewicz inequality. Comptes Rendus Acad. Sci Sér. Math. 318(2), 129–133 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)

  18. Milzarek, A., Ulbrich, M.: A semismooth Newton method with multidimensional filter globalization for \(\ell _1\)-optimization. SIAM J. Optim. 24(1), 298–333 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minka, T.P.: A comparison of numerical optimizers for logistic regression. Unpublished draft, (2003)

  20. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quarteroni, A.: Numerical Models for Differential Problems, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  22. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37(155), 105–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

  24. Solntsev, S., Nocedal, J., Byrd, R.H.: An algorithm for quadratic 1-regularized optimization with a flexible active-set strategy. Optim. Methods Softw. 30(6), 1213–1237 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sra, S., Nowozin, S., Wright., S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)

    Google Scholar 

  26. Stadler, G.: Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

  28. Wright, J.S.: Accelerated block-coordinate relaxation for regularized optimization. SIAM J. Optim. 22(1), 159–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. De Los Reyes.

Additional information

This research has been partially supported by SENESCYT Award PIC-13-INAMHI-002 ”Sistema de Pronóstico del Tiempo para todo el Territorio Ecuatoriano: Modelización Numérica y Estadística”, a joint project between the Research Center on Mathematical Modelling (MODEMAT) and the Instituto Nacional de Meteorología e Hidrología (INAMHI). Moreover, we acknowledge partial support of MATHAmSud project SOCDE “Sparse Optimal Control of Differential Equations”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Los Reyes, J.C., Loayza, E. & Merino, P. Second-order orthant-based methods with enriched Hessian information for sparse \(\ell _1\)-optimization. Comput Optim Appl 67, 225–258 (2017). https://doi.org/10.1007/s10589-017-9891-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9891-z

Keywords

Mathematics Subject Classification

Navigation