Computational Optimization and Applications

, Volume 65, Issue 1, pp 93–108 | Cite as

On the global convergence of the inexact semi-smooth Newton method for absolute value equation

  • J. Y. Bello Cruz
  • O. P. Ferreira
  • L. F. PrudenteEmail author


In this paper, we investigate global convergence properties of the inexact nonsmooth Newton method for solving the system of absolute value equations. Global Q-linear convergence is established under suitable assumptions. Moreover, we present some numerical experiments designed to investigate the practical viability of the proposed scheme.


Absolute value equation Inexact semi-smooth Newton method Global convergence Numerical experiments 

Mathematics Subject Classification

Primary 90C33 Secondary 15A48 



This work was partially supported by CAPES-MES-CUBA 226/2012 and UNIVERSAL FAPEG/CNPq Projects. J. Y. Bello Cruz is partially supported by CNPq Grants 303492/2013-9, 474160/2013-0. O. P. Ferreira is partially supported by FAPEG, CNPq Grants 4471815/2012-8, 305158/2014-7. L. F. Prudente is partially supported by FAPEG.


  1. 1.
    Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clarke, F.H.: Optimization and Nonsmooth Analysis, Volume 5 of Classics in Applied Mathematics, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)CrossRefGoogle Scholar
  3. 3.
    Davis, T.A.: Direct Methods for Sparse Linear Systems, vol. 2. SIAM, Philadelphia (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  7. 7.
    Iqbal, J., Iqbal, A., Arif, M.: Levenberg-Marquardt method for solving systems of absolute value equations. J. Comput. Appl. Math. 282, 134–138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mangasarian, O.L.: Absolute value equation solution via dual complementarity. Optim. Lett. 7(4), 625–630 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mangasarian, O.L.: Absolute value equation solution via linear programming. J. Optim. Theory Appl. 161(3), 870–876 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mangasarian, O.L.: Linear complementarity as absolute value equation solution. Optim. Lett. 8(4), 1529–1534 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mangasarian, O.L.: Unsupervised classification via convex absolute value inequalities. Optimization 64(1), 81–86 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2–3), 359–367 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ortega, J.M.: Numerical Analysis, Volume 3 of Classics in Applied Mathematics. A Second Course, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)CrossRefGoogle Scholar
  16. 16.
    Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. (TOMS) 8(1), 43–71 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Qi, L.Q., Sun, J.: A nonsmooth version of Newton’s method. Math. Progr. 58(3, Ser. A), 353–367 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rohn, J.: A theorem of the alternatives for the equation \(Ax+B\vert x\vert =b\). Linear Multilinear Algebra 52(6), 421–426 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Salkuyeh, D.K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8(8), 2191–2202 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143(2), 391–403 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Y. Bello Cruz
    • 1
  • O. P. Ferreira
    • 1
  • L. F. Prudente
    • 1
    Email author
  1. 1.IME/UFGGoiâniaBrazil

Personalised recommendations