Skip to main content
Log in

Distortion compensation as a shape optimisation problem for a sharp interface model

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A mechanical equilibrium problem for a material consisting of two components with different densities is considered. Due to the heterogeneous material densities, the outer shape of the underlying workpiece can be changed by shifting the interface between the subdomains. In this paper, the problem is modeled as a shape design problem for optimally compensating unwanted workpiece changes. The associated control variable is the interface. Regularity results for transmission problems are employed for a rigorous derivation of suitable first-order optimality conditions based on the speed method. The paper concludes with several numerical results based on a spline approximation of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that at this stage of investigation it is by no means necessary to assume that \(A_1,A_2\) are constant tensors. Indeed, assume \(A_1,A_2:D\rightarrow L({\mathbf {R}}^{3,3};{\mathbf {R}}^{3,3})\) and assuming

    figure b

    all calculations remain valid. Similarly, we could assume that \(\beta _1,\beta _2\in \text {L}^\infty (\text {D})\) instead of \(\beta _1,\beta _2 \in {\mathbf {R}}^+\).

References

  1. Afraites, L., Dambrine, M., Kateb, D.: Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim. 28(5–6), 519–551 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Science, vol. 146. Springer, New York (2002)

    MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)

    MATH  Google Scholar 

  4. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  5. Chełminski, K., Hömberg, D., Kern, D.: On a thermomechanical model of phase transitions in steel. Adv. Math. Sci. Appl. 18, 119–140 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Chełminski, K., Hömberg, D., Petzold, T.: On a phase field approach towards distortion compensation. (In preparation) (2013)

  7. Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9(1), 13–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costabel, M., Dauge, M., Nicaise, S.: Corner singularities and analytic regularity for linear elliptic systems. Part I: Smooth domains. Prepublication IRMAR 10–09 (2010)

  9. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries, volume 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition. Metrics, analysis, differential calculus, and optimization (2011)

  10. Ekeland, I., Temam, R.: Convex analysis and variational problems. North-Holland Publishing Co., Amsterdam. Translated from the French, Studies in Mathematics and its Applications, Vol. 1 (1976)

  11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  12. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  13. Henrot, A., Pierre, M.: Variation et optimisation de formes. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 48. Springer, Berlin. Une analyse géométrique. (A geometric analysis) (2005)

  14. Hömberg, D., Kern, D.: The heat treatment of steel—a mathematical control problem. Materialwiss. Werkstofftech. 40, 438–442 (2009)

    Article  Google Scholar 

  15. Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 38, 1003–1028 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lamboley, J., Pierre, M.: Structure of shape derivatives around irregular domains and applications. J. Convex Anal. 14(4), 807–822 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Pantz, O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. Comptes Rendus Math. Acad. Sci. Paris 341(5), 333–337 (2005)

    Article  MathSciNet  Google Scholar 

  18. Schüttenberg, S., Hunkel, M., Fritsching, U., Zoch, H.-W.: Controlling of distortion by means of quenching in adapted jet-fields. In: Zoch, H.-W., Lübben, Th (eds.) Proceedings of the 1st International Conference on Distortion Engineering - IDE 2005. Bremen, Germany, pp. 389–396. IWT, Bremen (2005)

  19. Shi, P., Wright, S.: Higher integrability of the gradient in linear elasticity. Math. Ann. 299(1), 435–448 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sturm, Kevin: Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SIAM J. Control Optim. 53(4), 2017–2039 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thoben, K.-D., Lübben, T., Clausen, B., Prinz, C., Schulz, A., Rentsch, R., Kusmierz, R., Nowag, L., Surm, H., Frerichs, F., Hunkel, M., Klein, D., Mayr, P.: “Distortion Engineering”: Eine systemorientierte Betrachtung des Bauteilverzugs. HTM 57, 276–282 (2002)

    Google Scholar 

  22. Ziemer, W.P.: Weakly Differentiable Functions, Graduate Texts in Mathematics. Sobolev Spaces and Functions of Bounded Variation, vol. 120. Springer, New York (1989)

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the DFG Research Center Matheon. M.H. further acknowledges support through the FWF-START-Project Y305 “Interfaces and Free Boundaries” as well as the FWF-SFB F32 “Mathematical Optimization and Its Applications in Biomedical Sciences”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Sturm.

Appendix: Proof of Theorem 2.1

Appendix: Proof of Theorem 2.1

The result concerning higher regularity is a direct consequence of [8, Theorem 5.3.8]. Here, we show that the Eq. (2.5) indeed has a unique solution for every \(\chi \in \text {X}(\text {D})\). This can be seen as follows:Footnote 1 Since \(A_1, A_2\) are positive definite with coercivity constants \(k_1>k_2>0\) and from Korns inequality (with constant \(\theta _{K}>0\)) it follows that there exist constants \(C,\theta >0\), independent of \(\chi \), such that for all \(\varvec{\varphi }\in H^1(\text {D};{\mathbf {R}}^d)\)

$$\begin{aligned} a_{\chi }(\varvec{\varphi },\varvec{\varphi })= & {} \int _{\text {D}} \chi A_1\varepsilon (\varvec{\varphi }):\varepsilon (\varvec{\varphi })\, dx+\int _{\text {D}} (1-\chi )A_2\varepsilon (\varvec{\varphi }):\varepsilon (\varvec{\varphi })\, dx\nonumber \\\ge & {} \underbrace{\int _{\text {D}} \chi (k_1-k_2)\varepsilon (\varvec{\varphi }):\varepsilon (\varvec{\varphi })\, dx}_{\ge 0}+\int _{\text {D}} k_2\varepsilon (\varvec{\varphi }):\varepsilon (\varvec{\varphi })\, dx\nonumber \\\ge & {} \theta \Vert \varvec{\varphi }\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)}^2, \end{aligned}$$
(6.1)

where \(\theta :=k_2 \theta _K\) and

$$\begin{aligned} a_{\chi }(\varvec{\varphi },\varvec{\psi })\le C\Vert \varvec{\varphi }\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)}\Vert \varvec{\psi }\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)}. \end{aligned}$$

Thus the Lemma of Lax and Milgram (see [11, pp. 297–299, Theorem 1]) guarantees the unique solvability of the variational problem:

$$\begin{aligned} \text {Find }\mathbf {u}\in \mathbf {\mathcal {W}}: \quad a_{\chi }(\mathbf {u},\varvec{\varphi })=\int _{\text {D}}\beta _\chi \mathrm{\, div\,}(\varvec{\varphi })\, dx\; \text { for all } \varvec{\varphi }\in \mathbf {\mathcal {W}}. \end{aligned}$$

Since \(\varvec{\varphi }\mapsto \int _{\text {D}}\beta _\chi \mathrm{\, div\,}(\varvec{\varphi })\, dx\in \mathbf {\mathcal {W}}^{-1}\) according to the Lemma of Lax and Milgram

$$\begin{aligned} \int _{\text {D}}\beta _\chi \mathrm{\, div\,}(\varvec{\varphi })\, dx\le \max \{\beta _2,\beta _1\}\sqrt{|D|}\Vert \varvec{\varphi }\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)}. \end{aligned}$$

Notice that the constants are independent of \(\Omega \). In order to see this a priori bound, recall \(\chi \subset \text {X}(\text {D})\) and let \(\mathbf {u}_{\chi }\) denote the corresponding solution to (2.5). Using (6.2) we compute

$$\begin{aligned} \theta \Vert \mathbf {u}_n\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)}^2&\le a_{\chi _n}(\mathbf {u}_n,\mathbf {u}_n) = \int _{\text {D}} \beta _{\chi _n}(x)\mathrm{\, div\,}(\mathbf {u}_n)\, dx \le C\Vert \mathbf {u}_n\Vert _{\text {H}^1(\text {D};{\mathbf {R}}^d)} \end{aligned}$$

with \(C:=\max \{\beta _1,\beta _2\}\sqrt{3|D|}/\theta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturm, K., Hintermüller, M. & Hömberg, D. Distortion compensation as a shape optimisation problem for a sharp interface model. Comput Optim Appl 64, 557–588 (2016). https://doi.org/10.1007/s10589-015-9816-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9816-7

Keywords

Navigation