Krige, D.G.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)
Google Scholar
Schonlau, M., Welch, W.J.: Global optimization with nonparametric function fitting. In: Proceedings of the ASA, Section on Physical and Engineering Sciences, pp. 183–186. (1996)
Jones, D.R., Schonlau, M.J., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)
Article
MathSciNet
MATH
Google Scholar
Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng. 86(1), 97–106 (1964)
MathSciNet
Google Scholar
Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)
Article
MathSciNet
MATH
Google Scholar
Picheny, V.: A stepwise uncertainty reduction approach to constrained global optimization. In: Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, pp. 787–795. (2014)
Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S.: Constrained efficient global optimization with support vector machines. Struct. Multidiscip. Optim. 46(2), 201–221 (2012)
Article
MATH
Google Scholar
Parr, J.M., Keane, A.J., Forrester, A.I.J., Holden, C.M.E.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)
Article
Google Scholar
Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91(2), 239–269 (2002)
Article
MathSciNet
MATH
Google Scholar
Audet, C., Dennis Jr, J.E.: A pattern search filter method for nonlinear programming without derivatives. SIAM J. Optim. 14(4), 980–1010 (2004)
Article
MathSciNet
MATH
Google Scholar
Audet, C., Dennis Jr, J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)
Article
MathSciNet
MATH
Google Scholar
Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44 (2011)
Article
Google Scholar
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Springer, New York (2006)
MATH
Google Scholar
Vazquez, E.: Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications. PhD thesis, Université Paris Sud-Paris XI. (2005)
Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer Experiments. Springer, Berlin (2003)
Book
MATH
Google Scholar
Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Parallel Problem Solving from Nature-PPSN VIII, pp. 282–291. Springer, New York (2004)
Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)
Article
MATH
Google Scholar
Forrester, A.I.J., Sobester, A., Keane, A.J.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Chichester (2008)
Book
Google Scholar
Sasena, M.J.: Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations. PhD Thesis, University of Michigan, Ann Arbor. (2002)
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
Article
MathSciNet
MATH
Google Scholar
Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plan. Inference 140(11), 3088–3095 (2010)
Article
MathSciNet
MATH
Google Scholar
Sasena, M.J., Papalambros, P.Y., Goovaerts, P.: The use of surrogate modeling algorithms to exploit disparities in function computation time within simulation-based optimization. Constraints 2, 5 (2001)
Google Scholar
Audet, C., Dennis Jr, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)
Article
MathSciNet
MATH
Google Scholar
Hansen, N.: The CMA evolution strategy: a comparing review. In Towards a New Evolutionary Computation, pp. 75–102. Springer, New York (2006)
Audet,C., Booker, A.J., Dennis Jr., J.E., Frank, P.D., Moore, D.W.: A surrogate-model-based method for constrained optimization. In: Proceedings of the 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, USA. Paper No. AIAA-2000-4891 (2000)
Parr, J.M., Forrester, A.I.J., Keane, A.J., Holden, C.M.E.: Enhancing infill sampling criteria for surrogate-based constrained optimization. J. Comput. Methods Sci. Eng. 12(1), 25–45 (2012)
MathSciNet
MATH
Google Scholar
Waldock, A., Corne, D.: Multiple objective optimisation applied to route planning. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, pp. 1827–1834. ACM (2011)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
MATH
Google Scholar
Audet, C., Savard, G., Zghal, W.: A mesh adaptive direct search algorithm for multiobjective optimization. Eur. J. Oper. Res. 204(3), 545–556 (2010)
Article
MathSciNet
MATH
Google Scholar