A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems

Abstract

In this paper, the NP-hard problem of minimizing power consumption in wireless communications systems is approached. In the literature, several metaheuristic approaches have been proposed to solve it. Currently a homogeneous cellular processing algorithm and a GRASP algorithm hybridized with path-relinking are considered the state of the art algorithms. The main contribution of this paper is the analysis of five main characteristics for a heterogeneous cellular processing algorithm, based on scatter search and GRASP. A series of computational experiments with standard instances were carried out to assess the impact of each one of these characteristics. Among the main analyses we found particularly interesting a time reduction by 74.24 %, produced by the stagnation detection characteristic. Also the communication characteristic improves the quality of the solutions by 24.73 %. The computational results show that our heterogeneous cellular processing algorithm is a good alternative for solving the problem. The proposed algorithm finds 34 new best known solutions, which is 27 % of the instances with unknown optimal values. A Friedman hypothesis test was carried out to validate that two state-of-the-art algorithms and the proposed algorithm are statistically equivalent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms, vol. 42. Springer, Berlin (2008)

    Google Scholar 

  2. 2.

    Alba, E., Dorronsoro, B., Alfonso, H.: Cellular memetic algorithms. J. Comput. Sci. Technol. 5(4), 257–263 (2005)

    Google Scholar 

  3. 3.

    Benvenuto, N., Carnevale, G., Tomasin, S.: Energy optimization of cdma transceivers using successive interference cancellation. In: GLOBECOM, pp. 2644–2648 (2004)

  4. 4.

    Benvenuto, N., Carnevale, G., Tomasin, S.: Optimum power control and ordering in sic receivers for uplink cdma systems. IEEE-ICC 2005 (2005)

  5. 5.

    Benvenuto, N., Carnevale, G., Tomasin, S.: Joint power control and receiver optimization of cdma transceivers using successive interference cancellation. IEEE Trans. Commun. 55(3), 563–573 (2007)

    Article  Google Scholar 

  6. 6.

    Bertacco, L., Brunetta, L., Fischetti, M.: The lopcc. Technical report, University of Padova (2004)

  7. 7.

    Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008)

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Bi, L., Xiao-fang, Z., Qian-sheng, Z., Shi-hen, T.: Differentiate coevolutionary algorithms. J. Converg. Inf. Technol. 6(4), 3247–3259 (2011)

    Google Scholar 

  9. 9.

    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

  10. 10.

    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997). doi:10.1109/4235.585892

    Article  Google Scholar 

  11. 11.

    Duarte, A., Laguna, M., Martí, R.: Tabu search for the linear ordering problem with cumulative costs. Comput. Optim. Appl. 48, 697–715 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Duarte, A., Martí, R., Álvarez, A., Ángel Bello, F.: Metaheuristics for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 216(2), 270–277 (2012)

    Article  Google Scholar 

  13. 13.

    El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In: Blesa, M., Blum, C., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, pp. 32–41. Springer, Berlin (2005)

    Google Scholar 

  14. 14.

    Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Global Optim. 6(2), 109–133 (1995)

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Feo, T., Resende, M., Smith, S.: A greedy randomized adaptive search procedure for maximum independent set. Oper. Res. 42(5), 860–878 (1994)

    MATH  Article  Google Scholar 

  16. 16.

    Folino, G., Pizzuti, C., Spezzano, G., Spezzano, O.: Combining cellular genetic algorithms and local search for solving satisfiability problems. In: Proceedings of Tenth IEEE International Conference on Tools with Artificial Intelligence, pp. 192–198 (1998)

  17. 17.

    García, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  18. 18.

    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)

    Article  Google Scholar 

  19. 19.

    Huy, N.Q., Soon, O.Y., Hiot, L.M., Krasnogor, N.: Adaptive cellular memetic algorithms. Evolut. Comput. 17(2), 231–256 (2009). (ISSN:1063–6560)

    Article  Google Scholar 

  20. 20.

    Laguna, M., Martí, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput. & Oper. Res. 26(12), 1217–1230 (1999). doi:10.1016/s0305-0548(98)00104-x. http://www.sciencedirect.com/science/article/pii/S030505489800104X

  21. 21.

    Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Paris, M., Ribeiro, C.: Parameter variation in grasp procedures. Investig. Oper. 9, 1–20 (2000)

    Google Scholar 

  23. 23.

    Păun, G.: Membrane computing. In: Fundamentals of Computation Theory. pp. 177–220. Springer, Berlin (2003)

  24. 24.

    Rachlin, J., Goodwin, R., Murthy, S., Akkiraju, R., Wu, F., Kumaran, S., Das, R.: A-teams: an agent architecture for optimization and decision-support. In: Müller, J., Rao, A., Singh, M. (eds.) Intelligent Agents V: Agents Theories, Architectures, and Languages. Lecture Notes in Computer Science, vol. 1555, pp. 261–276. Springer, Berlin (1999)

    Google Scholar 

  25. 25.

    Reinelt, G.: The linear ordering problem: algorithms and applications, Berlin: Heldermann verlag. Math. Soc. Sci. 14(2), 199–200 (1985). http://ideas.repec.org/a/eee/matsoc/v14y1987i2p199-200.html

  26. 26.

    Resende, M., Martí, R., Gallego, M., Duarte, A.: Grasp and path relinking for the max-min diversity problem. Comput. Oper. Res. 37(3), 498–508 (2010)

    MATH  MathSciNet  Article  Google Scholar 

  27. 27.

    Resende, M., Ribeiro, C., Glover, F., Martí, R.: Scatter search and path-relinking: fundamentals, advances, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 146, pp. 87–107. Springer, US (2010). chap. 4

    Google Scholar 

  28. 28.

    Resende, M., Riberio, C.: Handbook of Metaheurictics, vol. 146, chap. Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications. Springer, Berlin (2010)

    Google Scholar 

  29. 29.

    Righini, G.: A branch-and-bound algorithm for the linear ordering problem with cumulative costs. Eur. J. Oper. Res. 186, 965–971 (2008). http://econpapers.repec.org/RePEc:eee:ejores:v:186:y:2008:i:3:p:965-971

  30. 30.

    Rocha, J.F.: Análisis experimental de la superficie asociada al espacio de soluciones del problema de ordenamiento lineal con costos acumulados. Master’s thesis, Instituto Tecnológico de Ciudad Madero (2011)

  31. 31.

    Sipper, M.: The emergence of cellular computing. IEEE Comput. 32(7), 18–26 (1999)

    Article  Google Scholar 

  32. 32.

    Terán-Villanueva, J.D., Fraire-Huacuja, H., Carpio-Valadez, J., Pazos-R., R., Puga-Soberanes, H., Martínez-Flores, J.: Cellular processing algorithms. In: Melin, P., Castillo, O. (eds.) Soft Computing Applications in Optimization, Control, and Recognition, Studies in Fuzziness and Soft Computing, vol. 294, pp. 53–74. Springer, Berlin (2013)

    Google Scholar 

  33. 33.

    Terán-Villanueva, J.D., Fraire-Huacuja, H., Carpio-Valadez, J., Pazos-R, R., Puga-Soberanes, H., Martínez-Flores, J.: Experimental study of a new algorithm-design-framework based on cellular computing. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 451, pp. 517–532. Springer, Berlin (2013)

    Google Scholar 

  34. 34.

    Terán-Villanueva, J.D., Fraire-Huacuja, H., Duarte, A., Pazos-Rangel, R., Carpio-Valadez, J., Puga-Soberanes, H.: Improving iterated local search solution for the linear ordering problem with cumulative costs (lopcc). Knowledge-Based and Intelligent Information and Engineering Systems Lecture Notes in Computer Science 6277(2010), 183–192 (2010)

    Article  Google Scholar 

  35. 35.

    Terán-Villanueva, J.D., Fraire-Huacuja, H.J., Carpio-Valadez, J.M., R., R.P., Puga-Soberanes, H.J., Martínez-Flores, J.A.: Cellular processing scatter search for minimizing power consumption on wireless communications systems. In: HPCS, pp. 126–132 (2012)

  36. 36.

    Terán-Villanueva, J.D., Pazos-Rangel, R., Martínez, J.A., López-Locés, M.C., Zamarrón-Escobar, D., Pineda, A.: Hybrid grasp with composite local search and path-relinking for the linear ordering problem with cumulative costs. Int. J. Comb. Optim. Probl. Inform. 3(1), 21–30 (2012)

    Google Scholar 

  37. 37.

    Toulouse, M., Crainic, T.G., Gendreau, M.: Communication issues in designing cooperative multi-thread parallel searches. Springer, Berlin (1996)

    Google Scholar 

  38. 38.

    Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, Fairfax, VA, USA (2004)

Download references

Acknowledgments

Authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) and the Consejo Tamaulipeco de Ciencia y Tecnología (COTACYT) for support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Héctor Joaquín Fraire Huacuja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terán-Villanueva, J.D., Fraire Huacuja, H.J., Carpio Valadez, J.M. et al. A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems. Comput Optim Appl 62, 787–814 (2015). https://doi.org/10.1007/s10589-015-9754-4

Download citation

Keywords

  • Cellular processing algorithms
  • Wireless communications systems
  • Energy-efficient algorithms