Abstract
In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT algorithm has been proposed which has a good ability to locate promising regions of the feasible domain and convergence properties based on the generation of a dense set of points over the feasible domain. However, the efficiency of DIRECT deteriorates as the dimension and the ill-conditioning of the objective function increase. To overcome these limits, we propose DIRECT-type algorithms enriched by the efficient use of derivative-free local searches combined with nonlinear transformations of the feasible domain and, possibly, of the objective function. We report extensive numerical results both on test problems from the literature and on an application in structural proteomics.
This is a preview of subscription content, access via your institution.




References
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
Jones, D.R.: DIRECT global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 725–735. Springer, Berlin (2009)
Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010)
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)
Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015)
Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151, 175–190 (2011)
Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014)
Liu, Q., Zeng, J.: Global optimization by multilevel partition. J. Glob. Optim. 61(1), 47–69 (2015)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)
Panning, T.D., Watson, L.T., Allen, N.A., Shaffer, C.A., Tyson, J.J.: Deterministic global parameter estimation for a budding yeast model. In: Hamilton Jr., J.A., MacDonald, R., and Chinni, M.J. (eds.) Proceedings of the 2006 Spring Simulation Multiconf., High Performance Computing Symposium, pp. 195–201. Soc. for Modeling and Simulation Internat., San Diego, CA, (2006)
Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C., Shaffer, C.A., Tyson, J.J.: Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J. Glob. Optim. 40, 719–738 (2008)
Sergeyev, Ya D.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim 16(3), 910–937 (2006)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, Berlin (2014)
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014)
Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)
Leary, R.H.: Global optimization on funneling landscapes. J. Glob. Optim. 18(4), 367–383 (2000)
Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26(2), 173–190 (2003)
Kvasov, D.E., Sergeyev, Ya D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)
Bertolazzi, P., Guerra, C., Liuzzi, G.: A global optimization algorithm for protein surface alignment. BMC Bioinform. 11, 488–498 (2010)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48, 113–128 (2010)
Sergeyev, Ya D.: On convergence of “Divide the Best” global optimization algorithms. Optimization 44(3), 303–325 (1998)
Liuzzi, G., Lucidi, S., Piccialli, V., Sotgiu, A.: A magnetic resonance device designed via global optimization techniques. Math. Progr. 101(2), 339–364 (2004)
Lucidi, S., Sciandrone, M.: On the global convergence of derivative free methods for unconstrained optimization. SIAM J. Optim. 13, 97–116 (2002)
Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119–142 (2002)
Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)
He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23, 5–25 (2002)
Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2, 18–21 (1973)
Hedar, A.-R.: Test problems for unconstrained optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm
Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernndaz-Daz, A.G.: Problem definitions and evaluation criteria for the cec 2013 special session and competition on real-parameter optimization. In: Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, (2013)
Di Pillo, G., Lucidi, S., Rinaldi, F.: A derivative-free algorithm for constrained global optimization based on exact penalty functions. J. Optim. Theory Appl. 164(3), 862–882 (2015). doi: 10.1007/s10957-013-0487-1
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach Intell. 14, 239–255 (1992)
Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)
Acknowledgments
We thank two anonymous Reviewers whose helpful comments and suggestions helped up to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
1.1 The derivative-free local algorithm
In this section we report the sketch of a derivative-free procedure for unconstrained local minimization [23].

In particular, the actual implementation of Algorithm DF that we use is based on the one proposed in [23] where \(d^i = e^i\), \(i=1,\dots ,n\), where \(e^i\) denotes the \(i\)-th coordinate direction in \(\mathfrak {R}^n\).
1.2 Test set description
In the following table, for each problem of our test set, we report its name, the adopted number of variables and the value of the known global minimum point.
Rights and permissions
About this article
Cite this article
Liuzzi, G., Lucidi, S. & Piccialli, V. Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization. Comput Optim Appl 65, 449–475 (2016). https://doi.org/10.1007/s10589-015-9741-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-015-9741-9
Keywords
- Global optimization
- DIRECT-type algorithms
- Local minimizations
Mathematics Subject Classification
- 65K05
- 90C26