Skip to main content
Log in

Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider bound constrained global optimization problems where first-order derivatives of the objective function can be neither computed nor approximated explicitly. For the solution of such problems the DIRECT algorithm has been proposed which has a good ability to locate promising regions of the feasible domain and convergence properties based on the generation of a dense set of points over the feasible domain. However, the efficiency of DIRECT deteriorates as the dimension and the ill-conditioning of the objective function increase. To overcome these limits, we propose DIRECT-type algorithms enriched by the efficient use of derivative-free local searches combined with nonlinear transformations of the feasible domain and, possibly, of the objective function. We report extensive numerical results both on test problems from the literature and on an application in structural proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jones, D.R.: DIRECT global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 725–735. Springer, Berlin (2009)

    Chapter  Google Scholar 

  3. Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45, 353–375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased disimpl algorithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lera, D., Sergeyev, Y.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015)

    Article  MathSciNet  Google Scholar 

  6. Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151, 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Glob. Optim. 60(3), 483–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Q., Zeng, J.: Global optimization by multilevel partition. J. Glob. Optim. 61(1), 47–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Panning, T.D., Watson, L.T., Allen, N.A., Shaffer, C.A., Tyson, J.J.: Deterministic global parameter estimation for a budding yeast model. In: Hamilton Jr., J.A., MacDonald, R., and Chinni, M.J. (eds.) Proceedings of the 2006 Spring Simulation Multiconf., High Performance Computing Symposium, pp. 195–201. Soc. for Modeling and Simulation Internat., San Diego, CA, (2006)

  11. Panning, T.D., Watson, L.T., Allen, N.A., Chen, K.C., Shaffer, C.A., Tyson, J.J.: Deterministic parallel global parameter estimation for a model of the budding yeast cell cycle. J. Glob. Optim. 40, 719–738 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sergeyev, Ya D.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  14. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59(1), 23–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111–5116 (1997)

    Article  Google Scholar 

  16. Leary, R.H.: Global optimization on funneling landscapes. J. Glob. Optim. 18(4), 367–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26(2), 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kvasov, D.E., Sergeyev, Ya D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    Article  Google Scholar 

  19. Bertolazzi, P., Guerra, C., Liuzzi, G.: A global optimization algorithm for protein surface alignment. BMC Bioinform. 11, 488–498 (2010)

    Article  Google Scholar 

  20. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48, 113–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sergeyev, Ya D.: On convergence of “Divide the Best” global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liuzzi, G., Lucidi, S., Piccialli, V., Sotgiu, A.: A magnetic resonance device designed via global optimization techniques. Math. Progr. 101(2), 339–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucidi, S., Sciandrone, M.: On the global convergence of derivative free methods for unconstrained optimization. SIAM J. Optim. 13, 97–116 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a direct search algorithm. Comput. Optim. Appl. 23, 5–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2, 18–21 (1973)

    Article  MATH  Google Scholar 

  28. Hedar, A.-R.: Test problems for unconstrained optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

  29. Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernndaz-Daz, A.G.: Problem definitions and evaluation criteria for the cec 2013 special session and competition on real-parameter optimization. In: Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, (2013)

  30. Di Pillo, G., Lucidi, S., Rinaldi, F.: A derivative-free algorithm for constrained global optimization based on exact penalty functions. J. Optim. Theory Appl. 164(3), 862–882 (2015). doi: 10.1007/s10957-013-0487-1

  31. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach Intell. 14, 239–255 (1992)

    Article  Google Scholar 

  32. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous Reviewers whose helpful comments and suggestions helped up to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Liuzzi.

Appendix

Appendix

1.1 The derivative-free local algorithm

In this section we report the sketch of a derivative-free procedure for unconstrained local minimization [23].

figure f
Table 5 Test problems

In particular, the actual implementation of Algorithm DF that we use is based on the one proposed in [23] where \(d^i = e^i\), \(i=1,\dots ,n\), where \(e^i\) denotes the \(i\)-th coordinate direction in \(\mathfrak {R}^n\).

1.2 Test set description

In the following table, for each problem of our test set, we report its name, the adopted number of variables and the value of the known global minimum point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liuzzi, G., Lucidi, S. & Piccialli, V. Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization. Comput Optim Appl 65, 449–475 (2016). https://doi.org/10.1007/s10589-015-9741-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9741-9

Keywords

Mathematics Subject Classification

Navigation