Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Colorado State University Press, Fort Collins (1990)
Book
Google Scholar
Bonnans, J.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)
Article
MATH
MathSciNet
Google Scholar
Bonnans, J.F., Shapiro, A.: Optimization problems with perturbations: a guided tour. SIAM Rev. 40, 228–264 (1998)
Article
MATH
MathSciNet
Google Scholar
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
Book
MATH
Google Scholar
Diehl, M.: Real-time optimization for large scale nonlinear processes. PhD thesis, Universität Heidelberg (2001)
Facchinei, F., Fischer, A., Herrich, M.: A family of Newton methods for nonsmooth constrained systems with nonisolated solutions. Math. Methods Oper. Res. 1–11 (2011)
Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9, 14–32 (1998)
Article
MATH
MathSciNet
Google Scholar
Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)
Article
MATH
MathSciNet
Google Scholar
Ferreau, H.: An online active set strategy for fast solution of parametric quadratic programs with applications to predictive engine control. Master’s thesis, University of Heidelberg (2006)
Ferreau, H.: qpOASES - An open-source implementation of the online active set strategy for fast model predictive control. In: Proceedings of the Workshop on Nonlinear Model Based Control: Software and Applications, Loughborough, pp. 29–30 (2007)
Ferreau, H., Kirches, C., Potschka, A., Bock, H., Diehl, M.: qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 1–37 (2013)
Gal, T.: A historical sketch on sensitivity analysis and parametric programming. In: Gal, T., Greenberg, H. (eds.) Advances in Sensitivity Analysis and Parametric Programming. International series in operations research and management science, vol. 6, pp. 1–10. Springer, New York (1997)
Chapter
Google Scholar
Gfrerer, H., Guddat, J., Wacker, H.: A globally convergent algorithm based on imbedding and parametric optimization. Computing 30(3), 225–252 (1983)
Article
MATH
MathSciNet
Google Scholar
Gill, P., Kungurtsev, V., Robinson, D.: A regularized SQP method convergent to second order optimal points. Technical Report 13–04, UCSD CCoM (2013)
Gould, N., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads. Cahier du GERAD G 2013, 27 (2013)
Google Scholar
Guddat, J., Vasquez, F.G., Jongen, H.: Parametric Optimization: Singularities. Pathfollowing and Jumps. Teubner, Stuttgart (1990)
MATH
Google Scholar
Guddat, J., Wacker, H., Zulehner, W.: On imbedding and parametric optimizationa concept of a globally convergent algorithm for nonlinear optimization problems. In: Fiacco, A. (ed.) Sensitivity. Stability and parametric analysis, volume 21 of mathematical programming studies, pp. 79–96. Springer, Berlin (1984)
Google Scholar
Hager, W.W., Gowda, M.S.: Stability in the presence of degeneracy and error estimation. Math. Program. 85(1), 181–192 (1999)
Article
MATH
MathSciNet
Google Scholar
Hock, W., Schittkowski, K.: Lecture Notes in Economics and Mathematical Systems. Test examples for nonlinear programming codes. Springer, Berlin (1981)
Google Scholar
Izmailov, A.: Solution sensitivity for Karush–Kuhn–Tucker systems with non-unique Lagrange multipliers. Optimization 59(5), 747–775 (2010)
Article
MATH
MathSciNet
Google Scholar
Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 133, 93–120 (2012)
Article
MATH
MathSciNet
Google Scholar
Johnson, T.C., Kirches, C., Wächter. A.: An active-set quadratic programming method based on sequential hot-starts. 2013. Available at optimization online.
Jongen, H.T., Jonker, P., Twilt, F.: Critical sets in parametric optimization. Math. Program. 34(3), 333–353 (1986)
Article
MATH
MathSciNet
Google Scholar
Jongen, H.T., Weber, G.W.: On parametric nonlinear programming. Ann. Oper. Res. 27, 253–283 (1990)
Article
MATH
MathSciNet
Google Scholar
Klatte, D., Kummer, B.: Stability properties of infima and optimal solutions of parametric optimization problems. In: Demyanov, V., Pallaschke, D. (eds.) Nondifferentiable Optimization: Motivations and Applications. Lecture notes in economics and mathematical systems, vol. 255, pp. 215–229. Springer, Berlin (1985)
Chapter
Google Scholar
Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson, S. M. (ed.) Analysis and Computation of Fixed Points, pp. 93–138. Academic Press, New York (1980)
Kungurtsev, V.: Second Derivative SQP Methods. PhD thesis, UC-San Diego (2013)
Kyparisis, J.: On uniqueness of Kuhn–Tucker multipliers in nonlinear programming. Math. Program. 32(2), 242–246 (1985)
Article
MATH
MathSciNet
Google Scholar
Levy, A.B.: Solution sensitivity from general principles. SIAM J. Control Optim. 40, 1–38 (2001)
Article
MATH
MathSciNet
Google Scholar
Levy, A.B., Rockafellar, R.: Advances in Nonsmooth Optimization. Sensitivity of solutions in nonlinear programs with nonunique multipliers. World Scientific Publishing, Singapore (1995)
Google Scholar
Lundberg, B.N., Poore, A.B.: Numerical continuation and singularity detection methods for parametric nonlinear programming. SIAM J. Optim. 3, 134–154 (1993)
Article
MATH
MathSciNet
Google Scholar
Mostafa, E.-S.M., Vicente, L.N., Wright, S.J.: Global Optimization and Constraint Satisfaction. Numerical behavior of a stabilized SQP method for degenerate NLP problems, pp. 123–141. Springer, Berlin (2003)
Book
Google Scholar
Poore, A., Tiahrt, C.: Bifurcation problems in nonlinear parametric programming. Math. Program. 39, 189–205 (1987)
Article
MATH
MathSciNet
Google Scholar
Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Math. Program. 70, 159–172 (1995)
MATH
MathSciNet
Google Scholar
Robinson, S.: Perturbed Kuhn–Tucker points and rates of convergence for a class of nonlinear programming algorithms. Math. Program. 7, 1–16 (1974)
Article
MATH
Google Scholar
Robinson, S.M.: Stability theory for systems of inequalities. Part I: linear systems. SIAM J. Numer. Anal. 12, 754–769 (1975)
Article
MATH
MathSciNet
Google Scholar
Robinson, S.M.: Stability theory for systems of inequalities, Part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976)
Article
MATH
MathSciNet
Google Scholar
Robinson, S.M.: Optimality and Stability in Mathematical Programming. Generalized equations and their solutions, part II: applications to nonlinear programming. Springer, Berlin (1982)
Google Scholar
Sequeira, S., Graellis, M., Puigjaner, L.: Real-time evolution for on-line optimization of continuous processes. Ind. Eng. Chem. Res. 41, 1815–1825 (2002)
Article
Google Scholar
Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, New York (2010)
Book
MATH
Google Scholar
Tran-Dinh, Q., Savorgnan, C., Diehl, M.: Adjoint-based predictor–corrector sequential convex programming for parametric nonlinear optimization. SIAM J. Optim. 22(4), 12581284 (2012)
Google Scholar
Wachsmuth, G.: On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41(1), 78–80 (2013)
Watson, L.T.: Solving the nonlinear complementarity problem by a homotopy method. SIAM J. Control Optim. 17, 36–46 (1979)
Article
MATH
MathSciNet
Google Scholar
Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)
Article
MATH
MathSciNet
Google Scholar
Wright, S.J.: An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM J. Optim. 15(3), 673–696 (2005)
Article
MATH
MathSciNet
Google Scholar
Zavala, V., Anitescu, M.: Real-time nonlinear optimization as a generalized equation. SIAM J. Control Optim. 48(8), 5444–5467 (2010)
Article
MATH
MathSciNet
Google Scholar