Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J. Comput. 22, 555–567 (2010)
Article
MATH
MathSciNet
Google Scholar
Achterberg, T.: Constraint Integer Programming. Ph.D. Thesis, Technischen Universtät Berlin (2007)
Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)
Article
MathSciNet
Google Scholar
Applegate, D., Bixby, R., Cook, W., Chvátal, V.: The Traveling Salesman Problem, A Computational Study. Princeton University Press, Princeton (2006)
MATH
Google Scholar
Atamtürk, A., Nemhauser, G., Savelsbergh, M.W.P.: Conflict graphs in solving integer programming problems. Eur. J. Oper. Res. 121, 40–55 (2000)
Article
MATH
Google Scholar
Balas, E.: A modified lift-and-project procedure. Math. Program. 79, 19–31 (1997)
MATH
MathSciNet
Google Scholar
Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discr. Appl. Math. 89(1–3), 3–44 (1998)
Article
MATH
MathSciNet
Google Scholar
Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)
Article
MATH
Google Scholar
Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)
Article
MATH
Google Scholar
Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4, 224–234 (1980)
Article
MATH
MathSciNet
Google Scholar
Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)
Article
MATH
MathSciNet
Google Scholar
Bonami, P., Kılınç, M., Linderoth, J.: Algorithms and software for solving convex mixed integer nonlinear programs. IMA Vol. Math. Appl. 54, 1–40 (2012)
Article
Google Scholar
Bonami, P., Lee, J., Leyffer, S., Wächter, A.: More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division, September (2011)
Boorstyn, R.R., Frank, H.: Large-scale network topological optimization. IEEE Trans. Commun. 25, 29–47 (1997)
Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)
Article
MATH
MathSciNet
Google Scholar
Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout deisgn problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30, 54–69 (2005)
Article
Google Scholar
Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Article
MATH
MathSciNet
Google Scholar
Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)
Article
MATH
MathSciNet
Google Scholar
Elhedhli, S.: Service system design with immobile servers, stochastic demand, and congestion. Manuf. Serv. Oper. Manag. 8(1), 92–97 (2006)
Google Scholar
Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Programm. 128, 205–230 (2011)
Fletcher, R., Leyffer, S.: User manual for filterSQP. University of Dundee Numerical Analysis Report NA-181 (1998)
Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3, 227–252 (2002)
Article
MATH
MathSciNet
Google Scholar
Günlük, O., Lee, J., Weismantel, R.: MINLP strengthening for separaable convex quadratic transportation-cost ufl. Technical Report RC24213 (W0703–042), IBM Research Division, March (2007)
Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)
Article
MATH
MathSciNet
Google Scholar
Harjunkoski, I., Pörn, R., Westerlund, T.: MINLP: Trim-loss problem. In: Floudas, Christodoulos A., Pardalos, Panos M. (eds.) Encyclopedia of Optimization, pp. 2190–2198. Springer, New York (2009)
Chapter
Google Scholar
Kılınç, M.: Disjunctive Cutting Planes and Algorithms for Convex Mixed Integer Nonlinear Programming. Ph.D. Thesis, University of Wisconsin-Madison (2011)
Leyffer, S.: MacMINLP: Test Problems for Mixed Integer Nonlinear Programming, (2003). http://www.mcs.anl.gov/~leyffer/macminlp
Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)
Article
MATH
MathSciNet
Google Scholar
Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed INTeger Optimizer. Oper. Res. Lett. 15, 47–58 (1994)
Article
MATH
MathSciNet
Google Scholar
Pochet, Y., Wolsey, L.: Lot sizing with constant batches: formulation and valid inequalities. Math. Oper. Res. 18, 767–785 (1993)
Article
MATH
MathSciNet
Google Scholar
Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)
Article
Google Scholar
Ravemark, D.E., Rippin, D.W.T.: Optimal design of a multi-product batch plant. Comput. Chem. Eng. 22(1–2), 177–183 (1998)
Article
Google Scholar
Sawaya, N.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Ph.D. Thesis, Chemical Engineering Department, Carnegie Mellon University (2006)
Sawaya, N., Laird, C.D., Biegler, L.T., Bonami, P., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Lee, J., Lodi, A., Margot, F., Wächter, A.: CMU-IBM open source MINLP project test set, (2006). http://egon.cheme.cmu.edu/ibm/page.htm
Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. Ser. B 124, 383–411 (2010)
Article
MATH
MathSciNet
Google Scholar
Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)
Article
MATH
MathSciNet
Google Scholar
Türkay, M., Grossmann, I.E.: Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20(8), 959–978 (1996)
Article
Google Scholar
Vecchietti, A., Grossmann, I.E.: LOGMIP: a disjunctive 0–1 non-linear optimizer for process system models. Comput. Chem. Eng. 23(4–5), 555–565 (1999)
Article
Google Scholar