Skip to main content
Log in

A simplex-based numerical framework for simple and efficient robust design optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The Simplex Stochastic Collocation (SSC) method is an efficient algorithm for uncertainty quantification (UQ) in computational problems with random inputs. In this work, we show how its formulation based on simplex tessellation, high degree polynomial interpolation and adaptive refinements can be employed in problems involving optimization under uncertainty. The optimization approach used is the Nelder-Mead algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method, called Simplex2, is based on (i) a coupled stopping criterion and (ii) the use of an high-degree polynomial interpolation in the optimization space for accelerating some NM operators. Numerical results show that this method is very efficient for mono-objective optimization and minimizes the global number of deterministic evaluations to determine a robust design. This method is applied to some analytical test cases and a realistic problem of robust optimization of a multi-component airfoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Audet, C., Dennis, J.: Analysis of generalized pattern searches. SIAM J. Optim. 13(1), 889–903 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Beyer, H.-G., Sendhoff, B.: Robust optimization—a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196, 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burmen, A., Puhan, J., Tuma, T.: Grid restrained Nelder-Mead algorithm. Comput. Optim. Appl. 34(3), 359–375 (2005)

    Article  MathSciNet  Google Scholar 

  4. Congedo, P.M., Corre, C., Martinez, J.M.: Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties. Comput. Methods Appl. Mech. Eng. 200(1–4), 216–232 (2011)

    Article  Google Scholar 

  5. Congedo, P.M., Witteveen, J.A.S., Iaccarino, G.: Simplex-simplex approach for robust design optimization. In: Proceedings of EUROGEN2011, Eccomas Thematic Conference (2011)

    Google Scholar 

  6. Diwekar, U.: A novel sampling approach to combinatorial optimization under uncertainty. Comput. Optim. Appl. 24(2–3), 335–371 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doltsinis, I., Kang, Z.: Robust design of structures using optimization methods. Comput. Methods Appl. Mech. Eng. 193, 2221–2237 (2004)

    Article  MATH  Google Scholar 

  8. Eldred, M.S., Webster, C.G., Constantine, P.G.: Design under uncertainty employing stochastic expansion methods. AIAA Paper 2008-6001 (2008)

  9. Eldred, M.S., Swiler, L.P., Tang, G.: Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation. Reliab. Eng. Syst. Saf. 96, 1092–1113 (2011)

    Article  Google Scholar 

  10. Foo, J., Karniadakis, G.E.: Multi-element probabilistic collocation method in high dimensions. J. Comput. Phys. 229, 1536–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, F., Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl., 1–19 (2010). doi:10.1007/s10589-010-9329-3

  12. Han, L., Neumann, M.: Effect of dimensionality on the Nelder-Mead simplex method. Optim. Methods Softw. 21, 1–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jensen, H.A., Catalan, M.A.: On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems. Int. J. Non-Linear Mech. 42(5), 802–816 (2007)

    Article  MATH  Google Scholar 

  14. Lagarias, J.-C., Reeds, J.-A., Wright, M.-H., Wright, P.-E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, X., Zabaras, N.: An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229(10), 3884–3915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitra, G.: Introduction: optimization and risk modelling. Comput. Optim. Appl. 32(1–2), 5–8 (2005)

    Article  MathSciNet  Google Scholar 

  17. Namura, N., Shimoyama, K., Jeong, S., Obayashi, S.: Kriging/RBF-hybrid response surface method for highly nonlinear functions. In: IEEE Congress on Evolutionary Computation, pp. 2534–2541 (2011)

    Google Scholar 

  18. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MATH  Google Scholar 

  19. Park, G.J., Lee, T.H., Lee, K., Hwang, K.H.: Robust design: an overview. AIAA J. 44, 181–191 (2006)

    Article  Google Scholar 

  20. Poles, S.: The simplex method. Esteco technical report 2003-005 (2003)

  21. Price, C.J., Coope, I.D., Byatt, D.: A convergent variant of the Nelder-Mead algorithm. J. Optim. Theory Appl. 113(1), 5–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Price, C., Coope, I.: Frames and grids in unconstrained and linearly constrained optimization: a nonsmooth approach. SIAM J. Optim. 14, 415–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sankaran, S., Audet, C., Marsden, A.L.: A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J. Comput. Phys. 229, 4664–4682 (2010)

    Article  MATH  Google Scholar 

  24. Schueller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties–an overview. Comput. Methods Appl. Mech. Eng. 198, 242–272 (2008)

    MathSciNet  Google Scholar 

  25. Singer, S., Singer, S.: Complexity analysis of Nelder-Mead search iterations. In: Proceedings of the First Conference on Applied Mathematics and Computation, vol. 1, pp. 185–196 (2001)

    Google Scholar 

  26. Singer, S., Singer, S.: Efficient implementation of the Nelder-Mead search algorithm. Appl. Numer. Anal. Comput. Math. 1(3), 524–534 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Taguchi, G.: Introduction to Quality Engineering (1989). American Supplier Institute

    Google Scholar 

  28. Torczon, V.: Multi-directional search: a direct search algorithm for parallel machines. Ph.D. thesis, Rice University, Texas (1989)

  29. Xu, D., Albin, S.: Robust optimization of experimentally derived objective functions. IIE Trans. 35(9), 793–802 (2003)

    Article  Google Scholar 

  30. Witteveen, J.A.S., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34, A814–A838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Witteveen, J.A.S., Iaccarino, G.: Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM J. Sci. Comput. 34, A1522–A1543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer. Optim. 1, 330–343 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially financed by the associated team AQUARIUS (Joint team from INRIA and Stanford University). We would like to thank John Axerio-Cilies (Stanford University) for his great help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Marco Congedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Congedo, P.M., Witteveen, J. & Iaccarino, G. A simplex-based numerical framework for simple and efficient robust design optimization. Comput Optim Appl 56, 231–251 (2013). https://doi.org/10.1007/s10589-013-9569-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9569-0

Keywords

Navigation