Skip to main content
Log in

Algorithmic aspects of sums of Hermitian squares of noncommutative polynomials

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of Hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper several examples are given illustrating the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2

Similar content being viewed by others

Notes

  1. A BMV polynomial S m,k (X,Y) is the sum of all words in X,Y of total degree m and degree k in Y.

References

  1. Burgdorf, S., Cafuta, K., Klep, I., Povh, J.: The tracial moment problem and trace-optimization of polynomials. Math. Program. (2012). doi:10.1007/s10107-011-0505-8. http://www.optimization-online.org/DB_HTML/2010/04/2595.html

    Google Scholar 

  2. Bessis, D., Moussa, P., Villani, M.: Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics. J. Math. Phys. 16(11), 2318–2325 (1975)

    Article  MathSciNet  Google Scholar 

  3. Cafuta, K., Klep, I., Povh, J.: NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optim. Methods Softw. 26(3), 363–380 (2011). http://ncsostools.fis.unm.si/

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Jacob, B., Rosenberg, A. (eds.) K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, CA, 1992. Proc. Sympos. Pure Math., vol. 58, pp. 103–126. Am. Math. Soc., Providence (1995)

    Google Scholar 

  5. Connes, A.: Classification of injective factors. Cases II1, II, III λ , λ≠1. Ann. Math. 104, 73–115 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Oliveira, M.C., Helton, J.W., McCullough, S., Putinar, M.: Engineering systems and free semi-algebraic geometry. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. IMA Vol. Math. Appl., vol. 149, pp. 17–61. Springer, New York (2008)

    Chapter  Google Scholar 

  7. Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12(4), 1090–1099 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helton, J.W.: “Positive” noncommutative polynomials are sums of squares. Ann. Math. 156(2), 675–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaltofen, E., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. J. Symb. Comput. 47(1), 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klep, I., Povh, J.: Semidefinite programming and sums of Hermitian squares of noncommutative polynomials. J. Pure Appl. Algebra 214, 740–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klep, I., Schweighofer, M.: Connes’ embedding conjecture and sums of Hermitian squares. Adv. Math. 217(4), 1816–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klep, I., Schweighofer, M.: Sums of Hermitian squares and the BMV conjecture. J. Stat. Phys. 133(4), 739–760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2000/01)

    Article  MathSciNet  Google Scholar 

  14. Lassere, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press Optimization Series, vol. 1. Imperial College Press, London (2009)

    Book  Google Scholar 

  15. McCullough, S.: Factorization of operator-valued polynomials in several non-commuting variables. Linear Algebra Appl. 326(1–3), 193–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mittelmann, D.: An independent benchmarking of SDP and SOCP solvers. Math. Program., Ser. B 95, 407–430 (2003). http://plato.asu.edu/bench.html

    Article  MathSciNet  MATH  Google Scholar 

  17. McCullough, S., Putinar, M.: Noncommutative sums of squares. Pac. J. Math. 218(1), 167–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program., Ser. B 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pironio, S., Navascués, M., Acín, A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. In: Algorithmic and quantitative real algebraic geometry, Piscataway, NJ, 2001. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 60, pp. 83–99. Am. Math. Soc., Providence (2003)

    Google Scholar 

  23. Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45(2), 363–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stahl, H.R.: Proof of the BMV conjecture. arXiv:1107.4875

  27. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer Academic, Boston (2000). Theory, Algorithms, and Applications

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the three anonymous referees whose attentive comments helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Povh.

Additional information

S. Burgdorf was partially supported by the Zukunftskolleg Konstanz. I. Klep was supported by the Faculty Research Development Fund (FRDF) of The University of Auckland (project no. 3701119). Partially supported by the Slovenian Research Agency (program no. P1-0222). Part of this research was done while the author was on leave from the University of Maribor. S. Burgdorf and I. Klep were partially supported by the French-Slovene partnership project Proteus 20208ZM. J. Povh was supported by the Slovenian Research Agency (program no. P1-0297).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgdorf, S., Cafuta, K., Klep, I. et al. Algorithmic aspects of sums of Hermitian squares of noncommutative polynomials. Comput Optim Appl 55, 137–153 (2013). https://doi.org/10.1007/s10589-012-9513-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9513-8

Keywords

Navigation