Advertisement

A computational study and survey of methods for the single-row facility layout problem

  • Philipp Hungerländer
  • Franz Rendl
Article

Abstract

The single-row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange rectangular departments so as to minimize the overall interaction cost. This paper compares the different modelling approaches for (SRFLP) and applies a recent SDP approach for general quadratic ordering problems from Hungerländer and Rendl to (SRFLP). In particular, we report optimal solutions for several (SRFLP) instances from the literature with up to 42 departments that remained unsolved so far. Secondly we significantly reduce the best known gaps and running times for large instances with up to 110 departments.

Keywords

Single-row facility layout Space allocation Semidefinite optimization Combinatorial optimization 

Notes

Acknowledgements

We thank three anonymous referees for their constructive comments and suggestions for improvement leading to the present version of the paper.

References

  1. 1.
    Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Amaral, A.R.S.: An exact approach to the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single row facility layout problem (2011, in preparation). Preprint available from http://www.optimization-online.org/DB_FILE/2008/03/1931.pdf
  5. 5.
    Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anjos, M.F., Lasserre, J. (eds.): Handbook of Semidefinite, Conic and Polynomial Optimization International Series in Operations Research & Management Science. Springer, Berlin (2011, to appear) Google Scholar
  7. 7.
    Anjos, M.F., Liers, F.: Global Approaches for facility layout and vlsi floorplanning. In: Anjos, M.F., Lasserre, J.B. (eds.): Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications (2012, to appear) Google Scholar
  8. 8.
    Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36, 157–173 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Buchheim, C., Liers, F., Oswald, M.: Speeding up ip-based algorithms for constrained quadratic 0-1 optimization. Math. Program. 124, 513–535 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear ordering problem. INFORMS J. Comput. 168–177 (2009) Google Scholar
  13. 13.
    Chimani, M., Hungerländer, P., Jünger, M., Mutzel, P.: An SDP approach to multi-level crossing minimization. In: Proceedings of Algorithm Engineering & Experiments [ALENEX’2011] (2011) Google Scholar
  14. 14.
    Datta, D., Amaral, A.R.S., Figueira, J.R.: Single row facility layout problem using a permutation-based genetic algorithm. Eur. J. Oper. Res. 213(2), 388–394 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997) zbMATHGoogle Scholar
  16. 16.
    Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle method for semidefinite cutten plane relaxations of max-cut and equipartition. Math. Program. 105, 451–469 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: STOC’74: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, New York, pp. 47–63 (1974) CrossRefGoogle Scholar
  18. 18.
    Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gomes de Alvarenga, A., Negreiros-Gomes, F.J., Mestria, M.: Metaheuristic methods for a class of the facility layout problem. J. Intell. Manuf. 11, 421–430 (2000) CrossRefGoogle Scholar
  20. 20.
    Hall, K.M.: An r-dimensional quadratic placement algorithm. Manag. Sci. 17(3), 219–229 (1970) zbMATHCrossRefGoogle Scholar
  21. 21.
    Hammer, P.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13, 388–399 (1965) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Heragu, S.S., Alfa, A.S.: Experimental analysis of simulated annealing based algorithms for the layout problem. Eur. J. Oper. Res. 57(2), 190–202 (1992) zbMATHCrossRefGoogle Scholar
  23. 23.
    Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988) CrossRefGoogle Scholar
  24. 24.
    Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. Eur. J. Oper. Res. 53(1), 1–13 (1991) zbMATHCrossRefGoogle Scholar
  25. 25.
    Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms (vols. 1 and 2). Springer, Berlin (1993) Google Scholar
  26. 26.
    Hungerländer, P.: Exact approaches to ordering problems. Ph.D. thesis, Alpen-Adria Universität Klagenfurt (2011) Google Scholar
  27. 27.
    Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Program., Ser. B (2011, accepted). Preprint available at http://www.optimization-online.org/DB_HTML/2010/08/2696.html
  28. 28.
    Karp, R.M., Held, M.: Finite-state processes and dynamic programming. SIAM J. Appl. Math. 15(3), 693–718 (1967) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kumar, K.R., Hadjinicola, G.C., li Lin, T.: A heuristic procedure for the single-row facility layout problem. Eur. J. Oper. Res. 87(1), 65–73 (1995) zbMATHCrossRefGoogle Scholar
  30. 30.
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Love, R.F., Wong, J.Y.: On solving a one-dimensional space allocation problem with integer programming. INFOR, Inf. Syst. Oper. Res. 14, 139–143 (1967) Google Scholar
  32. 32.
    Picard, J.-C., Queyranne, M.: On the one-dimensional space allocation problem. Oper. Res. 29(2), 371–391 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 212, 307–335 (2010) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Romero, D., Sánchez-Flores, A.: Methods for the one-dimensional space allocation problem. Comput. Oper. Res. 17(5), 465–473 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Samarghandi, H., Eshghi, K.: An efficient tabu algorithm for the single row facility layout problem. Eur. J. Oper. Res. 205(1), 98–105 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Sanjeevi, S., Kianfar, K.: Note: a polyhedral study of triplet formulation for single row facility layout problem. Discrete Appl. Math. 158, 1861–1867 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Simmons, D.M.: One-Dimensional space allocation: an ordering algorithm. Oper. Res. 17, 812–826 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Simmons, D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, 249 (1971) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Simone, C.D.: The cut polytope and the Boolean quadric polytope. Discrete Math. 79(1), 71–75 (1990) zbMATHCrossRefGoogle Scholar
  40. 40.
    Suryanarayanan, J., Golden, B., Wang, Q.: A new heuristic for the linear placement problem. Comput. Oper. Res. 18(3), 255–262 (1991) zbMATHCrossRefGoogle Scholar
  41. 41.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Kluwer Academic, Boston (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institut für MathematikAlpen-Adria Universität KlagenfurtKlagenfurtAustria

Personalised recommendations