Abstract
This paper proposes a hybrid self-adaptive evolutionary algorithm for graph coloring that is hybridized with the following novel elements: heuristic genotype-phenotype mapping, a swap local search heuristic, and a neutral survivor selection operator. This algorithm was compared with the evolutionary algorithm with the SAW method of Eiben et al., the Tabucol algorithm of Hertz and de Werra, and the hybrid evolutionary algorithm of Galinier and Hao. The performance of these algorithms were tested on a test suite consisting of randomly generated 3-colorable graphs of various structural features, such as graph size, type, edge density, and variability in sizes of color classes. Furthermore, the test graphs were generated including the phase transition where the graphs are hard to color. The purpose of the extensive experimental work was threefold: to investigate the behavior of the tested algorithms in the phase transition, to identify what impact hybridization with the DSatur traditional heuristic has on the evolutionary algorithm, and to show how graph structural features influence the performance of the graph-coloring algorithms. The results indicate that the performance of the hybrid self-adaptive evolutionary algorithm is comparable with, or better than, the performance of the hybrid evolutionary algorithm which is one of the best graph-coloring algorithms today. Moreover, the fact that all the considered algorithms performed poorly on flat graphs confirms that graphs of this type are really the hardest to color.
Similar content being viewed by others
References
Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (1997)
Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151, 379–388 (2003)
Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
Blöchliger, I., Zufferey, N.: A reactive tabu search using partial solutions for the graph coloring problem. In: Kral, D., Sgall, J. (eds.) Coloring Graphs from Lists with Bounded Size of their Union: Result from Dagstuhl Seminar 03391. ITI-Series, vol. 156. Department of Applied Mathematics and Institute for Theoretical Computer Science, Prague (2003)
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)
Blum, C., Puchinger, J., Raidl, G.A., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
Boettcher, S., Percus, A.G.: Extremal optimization at the phase transition of the three-coloring problem. Phys. Rev. E 69(6), 66–73 (2004)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)
Brelaz, D.: New methods to color vertices of a graph. Commun. ACM 22, 251–256 (1979)
Brown, R.: Chromatic scheduling and the chromatic number problem. Manag. Sci. 19(4), 456–463 (1972)
Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. Eur. J. Oper. Res. 176(1), 177–192 (2007)
Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. Oper. Res. 32, 260–266 (1987)
Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 1, pp. 331–337. Morgan Kaufmann, San Mateo (1991)
Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Computer & Information Science Series, vol. 63, pp. 1–17. Chapman & Hall/CRC, Boca Raton (2007). Preliminary version available as Tech. Rep. AIDA-05-03 at Intellectics Group, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany
Chiarandini, M., Stützle, T.: Online compendium to the article: an analysis of heuristics for vertex colouring. http://www.imada.sdu.dk/~marco/gcp-study/. Accessed 20 December 2010
Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, NY, USA, September 2002, pp. 112–125 (2002)
Chiarandini, M., Stützle, T.: An analysis of heuristics for vertex colouring. In: Festa, P. (ed.) Proceedings of the 9th International Symposium. Lecture Notes in Computer Science, vol. 6049, pp. 326–337. Springer, Berlin (2010)
Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to register allocation. ACM Trans. Program. Lang. Syst. 12(4), 501–536 (1990)
Culberson, J.: Graph Coloring Page. http://web.cs.ualberta.ca/~joe/Coloring/. Accessed 20 December 2010
Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–284. American Mathematical Society, Rhode Island (1996)
de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151–162 (1985)
de Werra, D., Eisenbeis, C., Lelait, S., Marmol, B.: On a graph-theoretical model for cyclic register allocation. Discrete Appl. Math. 93(2–3), 191–203 (1999)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN V, 5th International Conference. Lecture Notes in Computer Science, vol. 1498, pp. 745–754. Springer, Berlin (1998)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
Eiben, A.E., Van Der Hauw, J.K., Van Hemert, J.I.: Graph coloring with adaptive evolutionary algorithms. J. Heuristics 4(1), 25–46 (1998)
Fister, I., Brest, J.: Using differential evolution for the graph coloring. In: Proceedings of IEEE SSCI2011 Symposium Series on Computational Intelligence, Piscataway, pp. 150–156 (2011)
Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)
Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)
Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)
Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33, 2547–2562 (2006)
Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Appl. Math. 156(2), 267–279 (2008)
Gamache, M., Hertz, A., Ouellet, J.O.: A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding. Comput. Oper. Res. 34(8), 2384–2395 (2007)
Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 35, 8–14 (1986)
Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, New York (1979)
Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed circuit testing. IEEE Trans. Circuits Syst. 23, 591–599 (1976)
Glass, C.: Bag rationalization for a food manufacturer. J. Oper. Res. Soc. 53, 544–551 (2002)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)
Hamiez, J.P., Hao, J.K., Glover, F.: A study of tabu search for coloring random 3-colorable graphs around the phase transition. Int. J. Appl. Metaheuristic Comput. 1(4), 1–24 (2010)
Hayes, B.: On the threshold. Am. Sci. 91, 12–17 (2003)
Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)
Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math. 156(13), 2551–2560 (2008)
Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)
Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Potomac, Maryland (1978)
Igel, C., Toussaint, M.: Neutrality and self-adaptation. Nat. Comput. 2, 117–132 (2003)
Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation, Part II; Graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)
Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge vol. 26. American Mathematical Society, Providence (1996)
Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)
Kubale, M.: Graph Colorings. American Mathematical Society, Rhode Island (2004)
Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–506 (1979)
Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203, 241–250 (2010)
Mabed, H., Caminada, A., Hao, J.K.: Genetic tabu search for robust fixed channel assignment under dynamic traffic data. Comput. Optim. Appl. (2010). doi:10.1007/s10589-010-9376-9
Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20, 302–316 (2008)
Malaguti, E., Toth, P.: A survey on vertex coloring problems. In: International Transactions in Operational Research, pp. 1–34 (2009)
Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 245–260. McGraw-Hill, Cambridge (1999)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)
Palubeckis, G.: A multistart tabu search approach for graph coloring. Inf. Technol. Control 4(21), 7–15 (2001)
Petford, A.D., Welsh, D.J.A.: A randomized 3-coloring algorithm. Discrete Math. 74, 253–261 (1989)
Smith, D.H., Hurley, S., Thiel, S.U.: Improving heuristics for the frequency assignment problem. Eur. J. Oper. Res. 107(1), 76–86 (1998)
Stadler, P.: Towards a theory of landscapes. In: Lopez-Pena, R. (ed.) Complex Systems and Binary Networks. Lecture Notes in Physics, vol. 461, pp. 77–163. Springer, Berlin (1995)
Trick, M.: Network resources for coloring a graph. http://mat.gsia.cmu.edu/COLOR/color.html. Accessed 20 December 2010
Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9, 63–82 (1988)
Van, J.I.: Hemert. Jano’s Homepage. http://www.vanhemert.co.uk/csp-ea.html. Accessed 20 December 2010
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fister, I., Mernik, M. & Filipič, B. Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm. Comput Optim Appl 54, 741–770 (2013). https://doi.org/10.1007/s10589-012-9496-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-012-9496-5