Skip to main content
Log in

Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a hybrid self-adaptive evolutionary algorithm for graph coloring that is hybridized with the following novel elements: heuristic genotype-phenotype mapping, a swap local search heuristic, and a neutral survivor selection operator. This algorithm was compared with the evolutionary algorithm with the SAW method of Eiben et al., the Tabucol algorithm of Hertz and de Werra, and the hybrid evolutionary algorithm of Galinier and Hao. The performance of these algorithms were tested on a test suite consisting of randomly generated 3-colorable graphs of various structural features, such as graph size, type, edge density, and variability in sizes of color classes. Furthermore, the test graphs were generated including the phase transition where the graphs are hard to color. The purpose of the extensive experimental work was threefold: to investigate the behavior of the tested algorithms in the phase transition, to identify what impact hybridization with the DSatur traditional heuristic has on the evolutionary algorithm, and to show how graph structural features influence the performance of the graph-coloring algorithms. The results indicate that the performance of the hybrid self-adaptive evolutionary algorithm is comparable with, or better than, the performance of the hybrid evolutionary algorithm which is one of the best graph-coloring algorithms today. Moreover, the fact that all the considered algorithms performed poorly on flat graphs confirms that graphs of this type are really the hardest to color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  2. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151, 379–388 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  4. Blöchliger, I., Zufferey, N.: A reactive tabu search using partial solutions for the graph coloring problem. In: Kral, D., Sgall, J. (eds.) Coloring Graphs from Lists with Bounded Size of their Union: Result from Dagstuhl Seminar 03391. ITI-Series, vol. 156. Department of Applied Mathematics and Institute for Theoretical Computer Science, Prague (2003)

    Google Scholar 

  5. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, C., Puchinger, J., Raidl, G.A., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  Google Scholar 

  7. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  8. Boettcher, S., Percus, A.G.: Extremal optimization at the phase transition of the three-coloring problem. Phys. Rev. E 69(6), 66–73 (2004)

    Article  Google Scholar 

  9. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  10. Brelaz, D.: New methods to color vertices of a graph. Commun. ACM 22, 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown, R.: Chromatic scheduling and the chromatic number problem. Manag. Sci. 19(4), 456–463 (1972)

    Article  MATH  Google Scholar 

  12. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. Eur. J. Oper. Res. 176(1), 177–192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. Oper. Res. 32, 260–266 (1987)

    Article  MATH  Google Scholar 

  14. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 1, pp. 331–337. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  15. Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Computer & Information Science Series, vol. 63, pp. 1–17. Chapman & Hall/CRC, Boca Raton (2007). Preliminary version available as Tech. Rep. AIDA-05-03 at Intellectics Group, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany

    Google Scholar 

  16. Chiarandini, M., Stützle, T.: Online compendium to the article: an analysis of heuristics for vertex colouring. http://www.imada.sdu.dk/~marco/gcp-study/. Accessed 20 December 2010

  17. Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Johnson, D.S., Mehrotra, A., Trick, M. (eds.) Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, Ithaca, NY, USA, September 2002, pp. 112–125 (2002)

    Google Scholar 

  18. Chiarandini, M., Stützle, T.: An analysis of heuristics for vertex colouring. In: Festa, P. (ed.) Proceedings of the 9th International Symposium. Lecture Notes in Computer Science, vol. 6049, pp. 326–337. Springer, Berlin (2010)

    Google Scholar 

  19. Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to register allocation. ACM Trans. Program. Lang. Syst. 12(4), 501–536 (1990)

    Article  Google Scholar 

  20. Culberson, J.: Graph Coloring Page. http://web.cs.ualberta.ca/~joe/Coloring/. Accessed 20 December 2010

  21. Culberson, J., Luo, F.: Exploring the k-colorable landscape with iterated greedy. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge, pp. 245–284. American Mathematical Society, Rhode Island (1996)

    Google Scholar 

  22. de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151–162 (1985)

    Article  MATH  Google Scholar 

  23. de Werra, D., Eisenbeis, C., Lelait, S., Marmol, B.: On a graph-theoretical model for cyclic register allocation. Discrete Appl. Math. 93(2–3), 191–203 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Dorne, R., Hao, J.K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature—PPSN V, 5th International Conference. Lecture Notes in Computer Science, vol. 1498, pp. 745–754. Springer, Berlin (1998)

    Chapter  Google Scholar 

  26. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

    Article  Google Scholar 

  27. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  28. Eiben, A.E., Van Der Hauw, J.K., Van Hemert, J.I.: Graph coloring with adaptive evolutionary algorithms. J. Heuristics 4(1), 25–46 (1998)

    Article  MATH  Google Scholar 

  29. Fister, I., Brest, J.: Using differential evolution for the graph coloring. In: Proceedings of IEEE SSCI2011 Symposium Series on Computational Intelligence, Piscataway, pp. 150–156 (2011)

    Google Scholar 

  30. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–464 (1996)

    Article  MATH  Google Scholar 

  31. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  Google Scholar 

  32. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)

    Article  Google Scholar 

  33. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Comput. Oper. Res. 33, 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-coloring problem. Discrete Appl. Math. 156(2), 267–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gamache, M., Hertz, A., Ouellet, J.O.: A graph coloring model for a feasibility problem in monthly crew scheduling with preferential bidding. Comput. Oper. Res. 34(8), 2384–2395 (2007)

    Article  MATH  Google Scholar 

  37. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 35, 8–14 (1986)

    Article  Google Scholar 

  38. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  39. Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed circuit testing. IEEE Trans. Circuits Syst. 23, 591–599 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Glass, C.: Bag rationalization for a food manufacturer. J. Oper. Res. Soc. 53, 544–551 (2002)

    Article  MATH  Google Scholar 

  41. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hamiez, J.P., Hao, J.K., Glover, F.: A study of tabu search for coloring random 3-colorable graphs around the phase transition. Int. J. Appl. Metaheuristic Comput. 1(4), 1–24 (2010)

    Article  Google Scholar 

  43. Hayes, B.: On the threshold. Am. Sci. 91, 12–17 (2003)

    Google Scholar 

  44. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math. 156(13), 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  47. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Potomac, Maryland (1978)

    MATH  Google Scholar 

  48. Igel, C., Toussaint, M.: Neutrality and self-adaptation. Nat. Comput. 2, 117–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation, Part II; Graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  50. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge vol. 26. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  51. Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968)

    Article  Google Scholar 

  52. Kubale, M.: Graph Colorings. American Mathematical Society, Rhode Island (2004)

    Book  MATH  Google Scholar 

  53. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–506 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203, 241–250 (2010)

    Article  MATH  Google Scholar 

  55. Mabed, H., Caminada, A., Hao, J.K.: Genetic tabu search for robust fixed channel assignment under dynamic traffic data. Comput. Optim. Appl. (2010). doi:10.1007/s10589-010-9376-9

    Google Scholar 

  56. Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20, 302–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Malaguti, E., Toth, P.: A survey on vertex coloring problems. In: International Transactions in Operational Research, pp. 1–34 (2009)

    Google Scholar 

  58. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 245–260. McGraw-Hill, Cambridge (1999)

    Google Scholar 

  59. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1992)

    MATH  Google Scholar 

  60. Palubeckis, G.: A multistart tabu search approach for graph coloring. Inf. Technol. Control 4(21), 7–15 (2001)

    Google Scholar 

  61. Petford, A.D., Welsh, D.J.A.: A randomized 3-coloring algorithm. Discrete Math. 74, 253–261 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Smith, D.H., Hurley, S., Thiel, S.U.: Improving heuristics for the frequency assignment problem. Eur. J. Oper. Res. 107(1), 76–86 (1998)

    Article  MATH  Google Scholar 

  63. Stadler, P.: Towards a theory of landscapes. In: Lopez-Pena, R. (ed.) Complex Systems and Binary Networks. Lecture Notes in Physics, vol. 461, pp. 77–163. Springer, Berlin (1995)

    Chapter  Google Scholar 

  64. Trick, M.: Network resources for coloring a graph. http://mat.gsia.cmu.edu/COLOR/color.html. Accessed 20 December 2010

  65. Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9, 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Van, J.I.: Hemert. Jano’s Homepage. http://www.vanhemert.co.uk/csp-ea.html. Accessed 20 December 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fister, I., Mernik, M. & Filipič, B. Graph 3-coloring with a hybrid self-adaptive evolutionary algorithm. Comput Optim Appl 54, 741–770 (2013). https://doi.org/10.1007/s10589-012-9496-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9496-5

Keywords

Navigation