Skip to main content
Log in

Self-adaptive differential evolution incorporating a heuristic mixing of operators

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A considerable number of differential evolution variants have been proposed in the last few decades. However, no variant was able to consistently perform over a wide range of test problems. In this paper, propose two novel differential evolution based algorithms are proposed for solving constrained optimization problems. Both algorithms utilize the strengths of multiple mutation and crossover operators. The appropriate mix of the mutation and crossover operators, for any given problem, is determined through an adaptive learning process. In addition, to further accelerate the convergence of the algorithm, a local search technique is applied to a few selected individuals in each generation. The resulting algorithms are named as Self-Adaptive Differential Evolution Incorporating a Heuristic Mixing of Operators. The algorithms have been tested by solving 60 constrained optimization test instances. The results showed that the proposed algorithms have a competitive, if not better, performance in comparison to the-state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. If the link does not work for any technical problem, feel free to contact the first author on s.elsayed@adfa.edu.au.

References

  1. Ilemobade, A., Stephenson, D.: Application of a constrained non-linear hydraulic gradient design tool to water reticulation network upgrade. Urban Water J. 3(4), 199–214 (2006)

    Article  Google Scholar 

  2. Rømo, F., Eidesen, B., Pedersen, B.: Optimizing the Norwegian natural gas production and transport. INFORMS Pract. Oper. Res. 38(6), 46–56 (2009)

    Google Scholar 

  3. Dell, R., Ewing, L., Tarantino, W.: Optimally stationing army forces. INFORMS Pract. Oper. Res. 38(6), 421–438 (2008)

    Google Scholar 

  4. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  6. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report, International Computer Science Institute (1995)

  7. Mezura-Montes, E., Reyes, J.V., Coello Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: The 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA, pp. 485–492. ACM, New York (2006)

    Google Scholar 

  8. Rechenberg, I.: Evolutions Strategie: optimierung Technischer Systeme nach Prinzipien der biologischen Evolution. Fromman-Holzboog, Stuttgart (1973)

    Google Scholar 

  9. Fogel, D.B.: A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation 64(6), 397–404 (1995)

    Article  Google Scholar 

  10. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  11. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2010 competition and special session on single objective constrained real-parameter optimization. Technical Report, Nangyang Technological University, Singapore (2010)

  12. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. Technical Report, Nanyang Technological University, Singapore (2005)

  13. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). doi:10.1023/a:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  14. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  15. Iorio, A., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Australian Conference on Artificial Intelligence, pp. 861–872 (2004)

    Google Scholar 

  16. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  18. Iorio, A.W., Li, X.: Improving the performance and scalability of differential evolution. In: Proceedings of the 7th International Conference on Simulated Evolution and Learning, Melbourne, Australia (2008)

    Google Scholar 

  19. Abbass, H.A.: The self-adaptive Pareto differential evolution algorithm. In: IEEE Congress on Evolutionary Computation, pp. 831–836 (2002)

    Google Scholar 

  20. Rönkkönen, J.: Continuous Multimodal Global Optimization with Differential Evolution-Based Methods. Lappeenranta University of Technology, Lappeenranta (2009)

    Google Scholar 

  21. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

    Article  Google Scholar 

  22. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)

    Article  Google Scholar 

  23. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE Trans. Evol. Comput. 14(4), 561–579 (2010)

    Article  Google Scholar 

  24. Tasgetiren, M.F., Suganthan, P.N., Quan-Ke, P., Mallipeddi, R., Sarman, S.: An ensemble of differential evolution algorithms for constrained function optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Chapter  Google Scholar 

  25. Tasgetiren, M.F., Suganthan, P.N., Pan, Q.-K.: An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem. Appl. Math. Comput. 215(9), 3356–3368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Computers and Operations Research 38(12), 1877–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, Y., Wang, Y.J.: A memetic differential evolutionary algorithm for high dimensional functions’ optimization. In: The Third International Conference on Natural Computation, pp. 188–192 (2007)

    Chapter  Google Scholar 

  28. Tirronen, V., Neri, F., Karkkainen, T., Majava, K., Rossi, T.: A memetic differential evolution in filter design for defect detection in paper production. In: EvoWorkshops 2007 on EvoCoMnet, EvoFIN, EvoIASP, EvoINTERACTION, EvoMUSART, EvoSTOC and EvoTransLog: Applications of Evolutionary Computing, Valencia, Spain (2007)

    Google Scholar 

  29. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37(1), 28–41 (2007)

    Article  Google Scholar 

  30. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput., Fusion Found. Methodol. Appl. 13(8), 811–831 (2009). doi:10.1007/s00500-008-0357-1

    Google Scholar 

  31. Chuan-Kang, T., Chih-Hui, H.: Varying number of difference vectors in differential evolution. In: IEEE Congress on Evolutionary Computation, 18–21 May 2009, pp. 1351–1358 (2009)

    Google Scholar 

  32. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp. 25–32 (2006)

    Google Scholar 

  33. Omran, M., Salman, A., Engelbrecht, A.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y.-M., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) Computational Intelligence and Security. Lecture Notes in Computer Science, vol. 3801, pp. 192–199. Springer, Berlin (2005)

    Chapter  Google Scholar 

  34. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  35. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation. In: IEEE Congress on Evolutionary Computation, pp. 1–9 (2010)

    Chapter  Google Scholar 

  36. Tessema, B., Yen, G.G.: An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 39(3), 565–578 (2009)

    Article  Google Scholar 

  37. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: Modified differential evolution for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp. 25–32 (2006)

    Google Scholar 

  38. Yong, W., Zixing, C., Yuren, Z., Wei, Z.: An adaptive tradeoff model for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 12(1), 80–92 (2008)

    Article  Google Scholar 

  39. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans. Evol. Comput. 9(1), 1–17 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber M. Elsayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsayed, S.M., Sarker, R.A. & Essam, D.L. Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput Optim Appl 54, 771–790 (2013). https://doi.org/10.1007/s10589-012-9493-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9493-8

Keywords

Navigation