Computational Optimization and Applications

, Volume 54, Issue 2, pp 371–398

A class of quasi-variational inequalities for adaptive image denoising and decomposition

  • Frank Lenzen
  • Florian Becker
  • Jan Lellmann
  • Stefania Petra
  • Christoph Schnörr
Article

Abstract

We introduce a class of adaptive non-smooth convex variational problems for image denoising in terms of a common data fitting term and a support functional as regularizer. Adaptivity is modeled by a set-valued mapping with closed, compact and convex values, that defines and steers the regularizer depending on the variational solution. This extension gives rise to a class of quasi-variational inequalities. We provide sufficient conditions for the existence of fixed points as solutions, and an algorithm based on solving a sequence of variational problems. Denoising experiments with spatial and spatio-temporal image data and an adaptive total variation regularizer illustrate our approach.

Keywords

Quasi-variational inequalities Adaptive image denoising Total variation regularization Solution-dependent adaptivity 

References

  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, 2nd edn. Springer, Berlin (2006) MATHGoogle Scholar
  2. 2.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006) CrossRefGoogle Scholar
  3. 3.
    Bronshtein, M.D.: Smoothness of roots of polynomials depending on parameters. Sib. Math. J. 20, 347–352 (1979) CrossRefGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Simulation 4, 490–530 (2005) MathSciNetMATHGoogle Scholar
  5. 5.
    Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chan, D., Pang, T.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7(2), 211–222 (1982) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Eberly, D.: Distance from a point to an ellipse in 2D. Tech. Rep., Magic Software Inc., www.magic-software.com (2002)
  8. 8.
    Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gilboa, G., Sochen, N., Zeevi, Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002) CrossRefGoogle Scholar
  11. 11.
    Gilboa, G., Darbon, J., Osher, S., Chan, T.: Nonlocal convex functionals for image regularization. Tech. Rep. 06-57, UCLA CAM report (2006) Google Scholar
  12. 12.
    Grasmair, M., Lenzen, F.: Anisotropic total variation filtering. Appl. Math. Optim. 62(3), 323–339 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision, SSVM’07, pp. 520–532. Springer, Berlin (2007) CrossRefGoogle Scholar
  14. 14.
    Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, C.: Variational image denoising with adaptive constraint sets. In: Proceedings of the 3rd International Conference on Scale Space and Variational Methods in Computer Vision. Springer, Berlin (2011) Google Scholar
  16. 16.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. Univ. Lect. Series, vol. 22. Am. Math. Soc., Providence (2001) MATHGoogle Scholar
  17. 17.
    Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. Discrete Contin. Dyn. Syst., Ser. A 31(4), 1383–1396 (2006) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) Computer Vision—ECCV 2008. LNCS, vol. 5304, pp. 57–68. Springer, Berlin (2008) CrossRefGoogle Scholar
  19. 19.
    Rellich, F.: Störungstheorie der Spektralzerlegung, I. Math. Ann. 113, 600–619 (1936) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Berlin (2004) Google Scholar
  21. 21.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) MATHCrossRefGoogle Scholar
  22. 22.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009) MATHGoogle Scholar
  23. 23.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993) MATHCrossRefGoogle Scholar
  24. 24.
    Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision, pp. 477–489 (2009) CrossRefGoogle Scholar
  25. 25.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Leipzig (1998) MATHGoogle Scholar
  26. 26.
    Wilkinson, J.: The Algebraic Eigenvalue Problem. Numerical Mathematics and Scientific Computation. Oxford University Press, London (1988) Google Scholar
  27. 27.
    Ziemer, W.: Weakly Differentiable Functions. Springer, Berlin (1989) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Frank Lenzen
    • 1
  • Florian Becker
    • 1
  • Jan Lellmann
    • 1
  • Stefania Petra
    • 1
  • Christoph Schnörr
    • 1
  1. 1.Heidelberg Collaboratory for Image Processing & Image and Pattern Analysis GroupUniversity of HeidelbergHeidelbergGermany

Personalised recommendations