Computational Optimization and Applications

, Volume 52, Issue 2, pp 483–506 | Cite as

Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts

  • Hanif D. Sherali
  • Evrim DalkiranEmail author
  • Jitamitra Desai


In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.


Polynomial programs Reformulation-Linearization Technique (RLT) Semidefinite programming BARON GloptiPoly Semidefinite cuts Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ai, W., Zhang, S.: Strong duality for the CDT subproblem: a necessary and sufficient condition. SIAM J. Optim. 19(4), 1735–1756 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, New York (2006) zbMATHCrossRefGoogle Scholar
  4. 4.
    Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program., Ser. A 113, 259–282 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dalkiran, E.: Discrete and continuous nonconvex optimization: decision trees, valid inequalities, and reduced basis techniques. Ph.D. thesis, Virginia Tech (2011) Google Scholar
  7. 7.
    Floudas, C.A., Pardalos, P.M., Adjiman, J.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999) zbMATHGoogle Scholar
  8. 8.
    Gill, P.E., Murray, W., Saunders, M.A.: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Helmberg, C.: Semidefinite programming. Eur. J. Oper. Res. 137(3), 461–482 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29(2), 165–194 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kojima, M., Tunçel, L.: On the finite convergence of successive SDP relaxation methods. Eur. J. Oper. Res. 143(2), 325–341 (2002) zbMATHCrossRefGoogle Scholar
  12. 12.
    Konno, H., Kawadai, N., Tuy, H.: Cutting plane algorithms for nonlinear semidefinite programming problems with applications. J. Glob. Optim. 25(2), 141–155 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0-1 programs. SIAM J. Control Optim. 12(3), 756–769 (2002) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lasserre, J.B.: Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27(2), 347–360 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 393–514. Elsevier, Amsterdam (2005) CrossRefGoogle Scholar
  17. 17.
    Schittkowski, K.: More test examples for nonlinear programming codes. Springer, New York (1987) zbMATHCrossRefGoogle Scholar
  18. 18.
    Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999) zbMATHGoogle Scholar
  19. 19.
    Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite cuts. J. Glob. Optim. 22, 233–261 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Glob. Optim. 2(1), 101–112 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7(1), 1–31 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sherali, H.D., Tuncbilek, C.H.: Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems. J. Glob. Optim. 10(4), 381–390 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Math. Program. 89(3), 459–478 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25, 163–168 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer Academic, Dordrecht (1998) zbMATHGoogle Scholar
  27. 27.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Vanderbei, R.J., Benson, H.Y.: On formulating semidefinite programming problems as smooth convex nonlinear optimization problems. Technical report, Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hanif D. Sherali
    • 1
  • Evrim Dalkiran
    • 2
    Email author
  • Jitamitra Desai
    • 3
  1. 1.Grado Department of Industrial and Systems EngineeringVirginia TechBlacksburgUSA
  2. 2.Department of Industrial and Systems EngineeringWayne State UniversityDetroitUSA
  3. 3.Division of Systems and Engineering ManagementNanyang Technological UniversitySingaporeSingapore

Personalised recommendations