Skip to main content
Log in

Generating equidistant representations in biobjective programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In recent years, emphasis has been placed on generating quality representations of the nondominated set of multiobjective optimization problems. This paper presents two methods for generating discrete representations with equidistant points for biobjective problems with solution sets determined by convex, polyhedral cones. The Constraint Controlled-Spacing method is based on the epsilon-constraint method with an additional constraint to control the spacing of generated points. The Bilevel Controlled-Spacing method has a bilevel structure with the lower-level generating the nondominated points and the upper-level controlling the spacing, and is extended to multiobjective problems. Both methods are proven to produce (weakly) nondominated points and are demonstrated on a variety of test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ehrgott, M., Wiecek, M.M.: Multiobjective programming. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 667–722. Springer, Berlin (2005)

    Google Scholar 

  2. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory Appl. 126(3), 473–501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armann, R.: Solving multiobjective programming problems by discrete representation. Optimization 20, 483–492 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, H.P., Sayin, S.: Towards finding global representations of the efficient set in multiple objective optimization. Nav. Res. Logist. 44, 47–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fliege, J.: Gap-free computation of Pareto-points by quadratic scalarization. Math. Methods Oper. Res. 59, 69–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps: Approximation and Visualization of Pareto Frontier. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  7. Faulkenberg, S.L., Wiecek, M.M.: On the quality of discrete representations in multiple objective programming. Optim. Eng. 11(3), 423–440 (2010)

    Article  MathSciNet  Google Scholar 

  8. Sayin, S.: Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Program. 87, 543–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helbig, S.: On a constructive approximation of the efficient outcomes in bicriterion vector optimization. J. Glob. Optim. 5, 35–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Churkina, S.Y.: Search for efficient solutions of multi-criterion problems by target-level method. Comput. Math. Model. 13(2), 208–213 (2002)

    Article  MathSciNet  Google Scholar 

  11. Steuer, R.E., Choo, E.U.: An interactive weighted tchebycheff procedure for multiple objective programming. Math. Program. 26(3), 326–344 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sayin, S.: A procedure to find discrete representations of the efficient set with specified coverage errors. Oper. Res. 51(3), 427–436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leyffer, S.: A complementarity constraint formulation of convex multiobjective optimization problems. INFORMS J. Comput. 21(2), 257–267 (2009)

    Article  MathSciNet  Google Scholar 

  14. Sayin, S., Kouvelis, P.: The multiobjective discrete optimization problem: A weighted min-max two-stage optimization approach and a bicriteria algorithm. Manag. Sci. 51(10), 1572–1581 (2005)

    Article  MATH  Google Scholar 

  15. Kouvelis, P., Sayin, S.: Algorithm robust for the bicriteria discrete optimization problem. Ann. Oper. Res. 147, 71–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ruzika, S.: On multiple objective combinatorial optimization. Ph.D. thesis, University of Kaiserslautern (2007)

  17. Hamacher, H.W., Pedersen, C.R., Ruzika, S.: Finding representative systems for discrete bicriterion optimization problems. Oper. Res. Lett. 35, 336–344 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sylva, J., Crema, A.: A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs. Eur. J. Oper. Res. 180, 1011–1027 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Masin, M., Bukchin, Y.: Diversity maximization approach for multiobjective optimization. Oper. Res. 56(2), 411–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eichfelder, G.: A constraint method in nonlinear multi-objective optimization. In: Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications, pp. 3–12. Springer, Berlin (2009)

    Google Scholar 

  21. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hunt, B.J.: Multiobjective programming with convex cones: Methodology and applications. Ph.D. thesis, Clemson University (2004)

  23. Engau, A.: Domination and decomposition in multiobjective programming. Ph.D. thesis, Clemson University (2007)

  24. Wiecek, M.M.: Advances in cone-based preference modeling for decision making with multiple criteria. Decis. Mak. Manuf. Serv. 1(1–2), 153–173 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 461–478. Springer, Berlin (2004)

    Google Scholar 

  26. Tiwari, S., Wiecek, M.M., Fadel, G.: Inclusion of preferences in the design of evolutionary algorithms. In: Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization (MA&O) Conference (2008)

    Google Scholar 

  27. Hunt, B.J., Blouin, V.Y., Wiecek, M.M.: Modeling relative importance of design criteria with a modified Pareto preference. J. Mech. Des. 129(9), 907–914 (2007)

    Google Scholar 

  28. Blouin, V.Y., Hunt, B.J., Wiecek, M.M.: MCDM with relative importance of criteria: application to configuration design of vehicles. In: Trzaskalik, T., Wachowicz, T. (eds.) Multiple Criteria Decision Making 08, pp. 11–39. The Karol Adamiecki University of Economics in Katowice, Katowice (2009)

    Google Scholar 

  29. Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19(4), 1694–1718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, P.L.: Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Mathematical Concepts and Methods in Science and Engineering, vol. 30. Springer, Berlin (1985)

    MATH  Google Scholar 

  31. Noghin, V.D.: Relative importance of criteria: a quantitative approach. J. Multi-Criteria Decis. Anal. 6(6), 355–363 (1997)

    Article  MATH  Google Scholar 

  32. Bitran, G.R., Magnanti, T.L.: The structure of admissible points with respect to cone dominance. J. Optim. Theory Appl. 29(4), 573–614 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tenhuisen, M.L., Wiecek, M.M.: On the structure of the non-dominated set for bicriteria programmes. J. Multi-Criteria Decis. Anal. 5, 232–243 (1996)

    Article  MATH  Google Scholar 

  34. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodology. North-Holland Series in System Science and Engineering. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  35. Jahn, J., Merkel, A.: Reference-point approximation method for the solution of bicriterial nonlinear optimization problems. J. Optim. Theory Appl. 78, 87–103 (1992)

    Article  MathSciNet  Google Scholar 

  36. Benson, H.P.: An algorithm for optimizing over the weakly efficient set. Eur. J. Oper. Res. 25, 192–199 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Benson, H.P.: A finite, nonadjacent extreme-point search algorithm for optimization over the efficient set. J. Optim. Theory Appl. 73(1), 47–64 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Benson, H.P.: A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case. J. Glob. Optim. 3, 95–111 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Benson, H.P., Lee, D.: Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem. J. Optim. Theory Appl. 88(1), 77–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Benson, H.P., Sayin, S.: A face search heuristic algorithm for optimizing over the efficient set. Nav. Res. Logist. 40, 103–116 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. Wiley, New York (1993)

    MATH  Google Scholar 

  42. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (2007)

    MATH  Google Scholar 

  43. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer Academic, Dordrecht (1997)

    Book  MATH  Google Scholar 

  44. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  45. Schandl, B.: Norm-based evaluation and approximation in multicriteria programming. Ph.D. thesis, Clemson University (1999)

  46. Tanaka, M., Watanabe, H., Furnkawa, Y., Tanino, T.: Ga-based decision support system for multicriteria optimization. In: Proceedings of the 1995 International Conference of Systems, Man, and Cybernetics, vol. 2, pp. 1556–1561 (1995)

    Google Scholar 

  47. Jahn, J.: Multiobjective search algorithm with subdivision technique. Comput. Optim. Appl. 35, 161–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Karasakal, E., Köksalan, M.: Generating a representative subset of the efficient frontier in multiple criteria decision making. Oper. Res. 57(1), 187–199 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey L. Faulkenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkenberg, S.L., Wiecek, M.M. Generating equidistant representations in biobjective programming. Comput Optim Appl 51, 1173–1210 (2012). https://doi.org/10.1007/s10589-011-9403-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9403-5

Keywords

Navigation