Skip to main content
Log in

Cooperation and competition in multidisciplinary optimization

Application to the aero-structural aircraft wing shape optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This article aims to contribute to numerical strategies for PDE-constrained multiobjective optimization, with a particular emphasis on CPU-demanding computational applications in which the different criteria to be minimized (or reduced) originate from different physical disciplines that share the same set of design variables. Merits and shortcuts of the most-commonly used algorithms to identify, or approximate, the Pareto set are reviewed, prior to focusing on the approach by Nash games. A strategy is proposed for the treatment of two-discipline optimization problems in which one discipline, the primary discipline, is preponderant, or fragile. Then, it is recommended to identify, in a first step, the optimum of this discipline alone using the whole set of design variables. Then, an orthogonal basis is constructed based on the evaluation at convergence of the Hessian matrix of the primary criterion and constraint gradients. This basis is used to split the working design space into two supplementary subspaces to be assigned, in a second step, to two virtual players in competition in an adapted Nash game, devised to reduce a secondary criterion while causing the least degradation to the first. The formulation is proved to potentially provide a set of Nash equilibrium solutions originating from the original single-discipline optimum point by smooth continuation, thus introducing competition gradually. This approach is demonstrated over a testcase of aero-structural aircraft wing shape optimization, in which the eigen-split-based optimization reveals clearly superior. Thereafter, a result of convex analysis is established for a general unconstrained multiobjective problem in which all the gradients are assumed to be known. This results provides a descent direction common to all criteria, and adapting the classical steepest-descent algorithm by using this direction, a new algorithm is defined referred to as the multiple-gradient descent algorithm (MGDA). The MGDA realizes a phase of cooperative optimization yielding to a point on the Pareto set, at which a competitive optimization phase can possibly be launched on the basis of the local eigenstructure of the different Hessian matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abou El Majd, B.: Algorithmes hiérarchiques et stratégies de jeux pour l’optimisation multidisciplinaire—Application à l’optimisation de la voilure d’un avion d’affaires. Ph.D. thesis, Université de Nice-Sophia Antipolis (2007). http://tel.archives-ouvertes.fr/tel-00529309/fr/

  2. Abou El Majd, B., Désidéri, J.A., Duvigneau, R.: Multilevel strategies for parametric shape optimization in aerodynamics. In: Shape Design in Aerodynamics: Parameterization and Sensitivity, vol. 17 (1–2), Revue Européenne de Mécanique Numérique European Journal of Computational Mechanics (2008)

    Google Scholar 

  3. Alexandrov, N.M.: Comparative properties of collaborative optimization and other approaches to mdo. Tech. rep., ICASE, Hampton, VA (1999)

  4. Attouch, H., Redont, P., Soubeyran, A.: A new class of alternating proximal minimization algorithms with costs-to-move. SIAM J. Optim. 18(3), 1061–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. Academic, Cornwall (1995)

    MATH  Google Scholar 

  6. Chandrashekarappa, P., Duvigneau, R.: Radial basis functions and kriging metamodels for aerodynamic optimization. Research Report 6151, INRIA (2007)

  7. Désidéri, J.A.: Split of territories in concurrent optimization. Research Report 6108, INRIA (2007). URL: https://hal.inria.fr/inria-00127194 (version 6)

  8. Désidéri, J.A.: Multiple-gradient descent algorithm (MGDA). Research Report 6953, INRIA (2009). URL: http://hal.inria.fr/inria-00389811/fr/

  9. Désidéri, J.A., Abou El Majd, B., Janka, A.: Nested and self-adaptive Bézier parameterizations for shape optimization. J. Comput. Phys. 124(1), 117–131 (2007)

    Article  Google Scholar 

  10. Duvigneau, R.: Meta-modeling for robust design and multi-level optimization. In: 42e Colloque d’Aérodynamique Appliquée, Couplages et Optimisation Multidisciplinaires, INRIA Sophia Antipolis, 19–21 March 2007 (2007)

    Google Scholar 

  11. Fonseca, C., Fleming, P.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. In: Transactions on Systems, Man and Cybernetics, Part A, vol. 28-1, pp. 26–37. IEEE, New York (1998)

    Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  13. Habbal, A., Thellner, M., Petersson, J.: Multidisciplinary topology optimization solved as a Nash game. Int. J. Numer. Methods Eng. 61, 949–963 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto genetic algorithm for multiobjective optimization. In: Proc. of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (ICEC’94), vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)

    Chapter  Google Scholar 

  15. Keane, A.J., Nair, P.B.: Computational Approaches for Aerospace Design, The Pursuit of Excellence. Wiley, Chichester (2005)

    Book  Google Scholar 

  16. Leoviriyakit, K., Jameson, A.: Case studies in aero-structural wing planform and section optimization. In: 22nd Applied Aerodynamics Conference and Exhibit. Providence, Rhode Island (2004)

    Google Scholar 

  17. Marcelet, M.: Etude et mise en œuvre d’une méthode d’optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure. Ph.D. thesis, Ecole Nationale d’Arts et Métiers, Paris (2008)

  18. Marco, N., Désidéri, J.A., Lanteri, S.: Multi-objective optimization in CFD by genetic algorithms. Tech. Rep. 3686. INRIA (1999)

  19. Marco, N., Lanteri, S., Désidéri, J.A., Mantel, B., Périaux, J.: A parallelized genetic algorithm for a 2-D shape optimum design problem. Surv. Math. Ind. 9, 207–221 (2000)

    MATH  Google Scholar 

  20. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  21. Nash, J.F.: Non-Cooperative Games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nelder, J.A., Mead, R.: A Simplex Method for Function Minimization. Comput. J. 7, 308–313 (1965)

    MATH  Google Scholar 

  23. Parte, Y., Auroux, D., Clément, J., Hermetz, J., Masmoudi, M.: Collaborative optimization. In: Breitkopf, P., Coelho, R.F. (eds.) Multidisciplinary Design Optimization in Computational Mechanics, pp. 321–368. Wiley/ISTE, London (2010). ISBN:9781848211384

    Google Scholar 

  24. Samareh, J.A.: Multidisciplinary aerodynamic-structural shape optimization using deformation (MASSOUD). In: 8th AIAA/NASA/USAF/ISS, MO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, 6–8 September 2000, no. 4911 in AIAA-2000 (2000)

    Google Scholar 

  25. Sobieszczanski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Optim. 14, 1–23 (1997)

    Article  Google Scholar 

  26. Sobieszczanski-Sobieski, J., Altus, T., Sandusky, R.R.: Bilevel integrated system synthesis for concurrent and distributed processing. AIAA J. 41, 1996–2003 (2003)

    Article  Google Scholar 

  27. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)

    Article  Google Scholar 

  28. Tang, Z., Désidéri, J.A., Périaux, J.: Multi-criterion aerodynamic shape-design optimization and inverse problems using control theory and Nash games. J. Optim. Theory Appl. 135(1) (2007)

  29. Tedford, N.P., Martins, J.R.R.A.: Comparison of mdo architectures within a universal framework. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island (2006). AIAA 2006-1617

    Google Scholar 

  30. Wang, J.: Optimisation distribuée multicritère par algorithmes génétiques et théorie des jeux & application à la simulation numérique de problèmes d’hypersustentation en aérodynamique. Ph.D. thesis, University of Paris 6 (2001). Spéc.: Math. App.

  31. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Tech. Rep. 43, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Antoine Désidéri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Désidéri, JA. Cooperation and competition in multidisciplinary optimization. Comput Optim Appl 52, 29–68 (2012). https://doi.org/10.1007/s10589-011-9395-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9395-1

Keywords

Navigation