Skip to main content
Log in

A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

An optimal control problem governed by an elliptic variational inequality of the first kind and bilateral control constraints is studied. A smooth penalization technique for the variational inequality is applied and convergence of stationary points of the subproblems to an E-almost C-stationary point of the limit problem is shown. The subproblems are solved using a full approximation multigrid scheme (FAS) and alternatively a multigrid method of the second kind for which a convergence result is given. An overall algorithmic concept is provided and its performance is discussed by means of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100. Pitman (Advanced Publishing Program), Boston (1984)

    MATH  Google Scholar 

  2. Bergounioux, M.: Optimal control of an obstacle problem. Appl. Math. Optim. 36(2), 147–172 (1997)

    MathSciNet  Google Scholar 

  3. Bergounioux, M.: Use of augmented Lagrangian methods for the optimal control of obstacle problems. J. Optim. Theory Appl. 95(1), 101–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergounioux, M.: Optimal control of problems governed by abstract elliptic variational inequalities with state constraints. SIAM J. Control Optim. 36(1), 273–289 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergounioux, M., Dietrich, H.: Optimal control of problems governed by obstacle type variational inequalities: a dual regularization-penalization approach. J. Convex Anal. 5(2), 329–351 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Bergounioux, M., Mignot, F.: Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM Control Optim. Calc. Var. 5, 45–70 (2000) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borzì, A.: Multigrid methods for parabolic distributed optimal control problems. J. Comput. Appl. Math. 157(2), 365–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borzì, A.: High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems. J. Comput. Appl. Math. 200(1), 67–85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borzì, A., Kunisch, K.: A multigrid scheme for elliptic constrained optimal control problems. Comput. Optim. Appl. 31(3), 309–333 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

    MATH  Google Scholar 

  12. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  MATH  Google Scholar 

  13. Friedman, A.: Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics. Wiley, New York (1982). A Wiley-Interscience Publication

    MATH  Google Scholar 

  14. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, vol. 8. North-Holland, Amsterdam (1981). Translated from the French

    Book  MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  16. Hackbusch, W.: On the fast solutions of nonlinear elliptic equations. Numer. Math. 32(1), 83–95 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hackbusch, W.: On the fast solving of parabolic boundary control problems. SIAM J. Control Optim. 17(2), 231–244 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hackbusch, W.: Die schnelle Auflösung der Fredholmschen Integral gleichung zweiter Art. Beitr. Numer. Math. 9(1), 47–62 (1981)

    Google Scholar 

  19. Hackbusch, W.: Error analysis of the nonlinear multigrid method of the second kind. Apl. Mat. 26(1), 18–29 (1981). With a loose Russian summary

    MathSciNet  MATH  Google Scholar 

  20. Hackbusch, W.: Multigrid Methods and Applications. Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985)

    Google Scholar 

  21. Hintermüller, M.: Inverse coefficient problems for variational inequalities: optimality conditions and numerical realization. M2AN Math. Model. Numer. Anal. 35(1), 129–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hintermüller, M.: An active-set equality constrained Newton solver with feasibility restoration for inverse coefficient problems in elliptic variational inequalities. Inverse Probl. 24(3), 034017, 23 (2008)

    Article  Google Scholar 

  23. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003), 2002 (electronic)

    Article  MATH  Google Scholar 

  24. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). Reprint of the 1980 original

    Book  MATH  Google Scholar 

  26. Kopacka, I.: MPECs/MPCCs in function space: first order optimality concepts, path-following, and multilevel algorithms. PhD thesis, Department of Mathematics and Scientific Computing, University of Graz (2009)

  27. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  28. Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3), 466–476 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Neittaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems. Springer Monographs in Mathematics. Springer, New York (2006). Theory and applications

    MATH  Google Scholar 

  30. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Nonconvex Optimization and Its Applications, vol. 28. Kluwer Academic, Dordrecht (1998). Theory, applications and numerical results

    MATH  Google Scholar 

  31. Rodrigues, J.-F.: Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies, vol. 134. North-Holland, Amsterdam (1987). Notas de Matemática [Mathematical Notes], 114

    MATH  Google Scholar 

  32. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden (2005)

    MATH  Google Scholar 

  35. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hintermüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hintermüller, M., Kopacka, I. A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput Optim Appl 50, 111–145 (2011). https://doi.org/10.1007/s10589-009-9307-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9307-9

Navigation