Computational Optimization and Applications

, Volume 48, Issue 3, pp 697–715 | Cite as

Tabu search for the linear ordering problem with cumulative costs

Article

Abstract

Given a matrix of weights, the Linear Ordering Problem (LOP) consists of finding a permutation of the columns and rows in order to maximize the sum of the weights in the upper triangle. This well known NP-complete problem can also be formulated on a complete weighted graph, where the objective is to find an acyclic tournament that maximizes the sum of arc weights. The variant of the LOP that we target here was recently introduced and adds a cumulative non-linear propagation of the costs to the sum of the arc weights. We first review the previous methods for the LOP and for this variant with cumulative costs (LOPCC) and then propose a heuristic algorithm for the LOPCC, which is based on the Tabu Search (TS) methodology. Our method achieves search intensification and diversification through the implementation of both short and long term memory structures. Our extensive experimentation with 224 instances shows that the proposed procedure outperforms existing methods in terms of solution quality and has reasonable computing-time requirements.

Keywords

Combinatorial optimization Metaheuristics Linear ordering problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using partial experimental designs and local search. Oper. Res. 54(1), 99–114 (2006) CrossRefMATHGoogle Scholar
  2. 2.
    Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: TTTPLOTS: A Perl program to create time-to-target plots. Optim. Lett. 1, 355–366 (2008) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Becker, O.: Das Helmstädtersche Reihenfolgeproblem—die Effizienz verschiedener Näherungsverfahren. In: Computer Uses in the Social Sciences. Bericht einer Working Conference, Wien, January 1967 Google Scholar
  4. 4.
    Benvenuto, N., Carnevale, G., Tomasin, S.: Optimum power control and ordering in SIC receivers for uplink CDMA systems. In: IEEE-ICC 2005, Seoul, Korea, 2005 Google Scholar
  5. 5.
    Bertacco, L., Brunetta, L., Fischetti, M.: The linear ordering problem with cumulative costs. Eur. J. Oper. Res. 189(3), 1345–1357 (2008) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Campos, V., Glover, F., Laguna, M., Martí, R.: An experimental evaluation of a scatter search for the linear ordering problem. J. Glob. Optim. 21, 397–414 (2001) CrossRefMATHGoogle Scholar
  7. 7.
    Chanas, S., Kobylanski, P.: A new heuristic algorithm solving the linear ordering problem. Comput. Optim. Appl. 6, 191–205 (1996) MATHMathSciNetGoogle Scholar
  8. 8.
    Feo, T.A., Resende, M.G.C., Smith, S.H.: A greedy randomized search procedure for maximum independence set. Oper. Res. 42, 860–878 (1994) CrossRefMATHGoogle Scholar
  9. 9.
    García, C., Pérez, D., Campos, V., Martí, R.: Variable neighborhood search for the linear ordering problem. Comput. Oper. Res. 33, 3549–3565 (2006) CrossRefMATHGoogle Scholar
  10. 10.
    Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) Artificial Evolution. Lecture Notes in Computer Science, vol. 1363, pp. 13–54. Springer, Berlin (1998) CrossRefGoogle Scholar
  11. 11.
    Grotschel, M., Junger, M., Reinelt, G.: A cutting plane algorithm for the linear ordering problem. Oper. Res. 32(6), 1195–1220 (1984) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoos, H.H., Stützle, T.: Evaluating Las Vegas algorithms—pitfalls and remedies. In: Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 238–245 (1998) Google Scholar
  13. 13.
    Laguna, M., Martí, R.: Scatter Search—Methodology and Implementations. Kluwer Academic, Boston (2003) Google Scholar
  14. 14.
    Laguna, M., Martí, R., Campos, V.: Intensification and diversification with elite tabu search solutions for the linear ordering problem. Comput. Oper. Res. 26, 1217–1230 (1999) CrossRefMATHGoogle Scholar
  15. 15.
    Martí, R., Reinelt, G., Duarte, A.: Linear ordering LIBrary. http://heur.uv.es/optsicom/LOLIB (2009)
  16. 16.
    Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2004) Google Scholar
  17. 17.
    Reinelt, G.: The linear ordering problem: Algorithms and applications. In: Hofmann, H.H., Wille, R. (eds.) Research and Exposition in Mathematics, vol. 8. Heldermann, Berlin (1985) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departamento de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMadridSpain
  2. 2.Leeds School of BusinessUniversity of Colorado at BoulderBoulderUSA
  3. 3.Departamento de Estadística e Investigación OperativaUniversidad de ValenciaValenciaSpain

Personalised recommendations