Skip to main content
Log in

A relaxation algorithm with a probabilistic guarantee for robust deviation optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Three measures of robustness (absolute robustness, deviation robustness and relative robustness), whose choice depends on the goals of the decision maker, have been proposed for uncertain optimization problems. Absolute robustness has been thoroughly studied, whereas the others have been studied to less of a degree.

We focus on deviation robustness for uncertain convex quadratic programming problems with ellipsoidal uncertainties and propose a relaxation technique based on random sampling for robust deviation optimization problems. We theoretically and experimentally show that solving the relaxation problem gives a tighter lower bound than solving a simple sampled relaxation problem. Furthermore, we measure the robustness of the solution in a probabilistic setting. The number of random samples is estimated for obtaining an approximate solution with a probabilistic guarantee, and the approximation error is evaluated a-priori and a-posteriori. Our relaxation algorithm with a probabilistic guarantee utilizes a-posteriori assessment to evaluate the accuracy of the approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aron, I.D., Hentenryck, P.V.: On the complexity of the robust spanning tree problem with interval data. Oper. Res. Lett. 32, 36–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertsimas, D., Sim, M.: Tractable approximations of robust conic optimization problems. Math. Program. 107, 5–36 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

  6. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Calafiore, G., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Automat. Control 51, 742–753 (2006)

    Article  MathSciNet  Google Scholar 

  8. Charnes, A., Cooper, W.W.: Chance constrained programming. Manag. Sci. 6, 73–79 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. El Ghaoui, L., Lebret, H.: Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdogan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math. Program. 107, 37–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldfarb, D., Iyengar, G.: Robust convex quadratically constrained programs. Math. Program. 97, 495–515 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28, 1–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hites, R., Salazar-Neumann, M.: The robust deviation p-elements problem with interval data. Technical Report, Service de Mathematiques de la Gestion, Universite Libre de Bruxelles (2004). Available at http://www.ulb.ac.be/polytech/smg/publications/Preprints/Hites04_04.htm

  14. Kanamori, T., Takeda, A.: Worst-case violation of sampled convex programs for optimization with uncertainty. Research Report B-425, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology (2006). Available at http://www.is.titech.ac.jp/research/research-report/B/B-425.pdf

  15. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  16. Krishnamurthy, V.: Robust optimization in finance. Second Summer Paper for the Doctoral Program (supervised by R.H. Tütüncü). Preprint (2004)

  17. Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty. Springer, Berlin (2006)

    Google Scholar 

  18. Tütüncü, R.H., Hauser, R., Krishnamurthy, V.: Relative robust optimization. Abstract in 19th International Symposium on Mathematical Programming (ISMP 2006), 2006

  19. Yaman, H., Karaşan, O.E., Pinar, M.Ç.: Restricted robust optimization for maximization over uniform matroid with interval data uncertainty. Technical Report, Bilkent University (2004). www.bilkent.edu.tr/~hyaman/RRD.htm

  20. Yaman, H., Karaşan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29, 31–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yu, G., Yang, J.: On the robust shortest path problem. Comput. Oper. Res. 25, 457–468 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, A., Taguchi, S. & Tanaka, T. A relaxation algorithm with a probabilistic guarantee for robust deviation optimization. Comput Optim Appl 47, 1–31 (2010). https://doi.org/10.1007/s10589-008-9212-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9212-7

Keywords

Navigation