Advertisement

α-Conservative approximation for probabilistically constrained convex programs

  • Yuichi Takano
  • Jun-ya GotohEmail author
Article
  • 125 Downloads

Abstract

In this paper, we address an approximate solution of a probabilistically constrained convex program (PCCP), where a convex objective function is minimized over solutions satisfying, with a given probability, convex constraints that are parameterized by random variables. In order to approach to a solution, we set forth a conservative approximation problem by introducing a parameter α which indicates an approximate accuracy, and formulate it as a D.C. optimization problem.

As an example of the PCCP, the Value-at-Risk (VaR) minimization is considered under the assumption that the support of the probability of the associated random loss is given by a finitely large number of scenarios. It is advantageous in solving the D.C. optimization that the numbers of variables and constraints are independent of the number of scenarios, and a simplicial branch-and-bound algorithm is posed to find a solution of the D.C. optimization. Numerical experiments demonstrate the following: (i) by adjusting a parameter α, the proposed problem can achieve a smaller VaR than the other convex approximation approaches; (ii) when the number of scenarios is large, a typical 0-1 mixed integer formulation for the VaR minimization cannot be solved in a reasonable time and the improvement of the incumbent values is slow, whereas the proposed method can achieve a good solution at an early stage of the algorithm.

Keywords

Chance constraint D.C. optimization Branch-and-bound Value-at-risk minimization Probabilistically constrained program 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benati, S., Rizzi, R.: A mixed integer linear programming formulation of the optimal mean/value-at-risk portfolio problem. Eur. J. Oper. Res. 176, 423–434 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertsimas, D., Sim, M.: Price of robustness. Oper. Res. 52, 35–53 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Calafiore, G., Campi, M.C.: Decision making in an uncertain environment: the scenario-based optimization approach. In: Andrysek, J., Karny, M., Kracik, J. (eds.) Multiple Participant Decision Making, pp. 99–111. Advanced Knowledge International (2004) Google Scholar
  6. 6.
    Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958) CrossRefGoogle Scholar
  8. 8.
    Dentcheva, D.: Optimization models with probabilistic constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design under Uncertainty, pp. 49–97. Springer, London (2006) CrossRefGoogle Scholar
  9. 9.
    El Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51, 543–556 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gaivoronski, A.A., Pflug, G.: Value-at-risk in portfolio optimization: properties and computational approach. J. Risk 7, 1–31 (2005) Google Scholar
  11. 11.
    Gilli, M., Këllezi, E., Hysi, H.: A data-driven optimization heuristic for downside risk minimization. J. Risk 8, 1–19 (2006) Google Scholar
  12. 12.
    GloriaMundi.org: http://www.gloriamundi.org/
  13. 13.
    Konno, H., Thach, P.T., Tuy, H.: Optimization on Low Rank Nonconvex Structures. Kluwer Academic, Dordrecht (1997) zbMATHGoogle Scholar
  14. 14.
    Larsen, N., Mausser, H., Uryasev, S.: Algorithms for optimization of value-at-risk. In: Pardalos, P., Tsitsiringos, V.K. (eds.) Financial Engineering, e-Commerce and Supply Chain, pp. 129–157. Kluwer Academic, Dordrecht (2002) Google Scholar
  15. 15.
    Miller, L.B., Wagner, H.: Chance constrained programming with joint constraints. Oper. Res. 13, 930–945 (1965) zbMATHCrossRefGoogle Scholar
  16. 16.
    Natarajan, K., Pachamanova, D., Sim, M.: Incorporating asymmetric distributional information in robust value-at-risk optimization. Manag. Sci. 54, 573–585 (2008) zbMATHCrossRefGoogle Scholar
  17. 17.
    Nemirovski, A.: On tractable approximations of randomly perturbed convex constraints. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 3, pp. 2419–2422 (2003) Google Scholar
  18. 18.
    Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17, 969–996 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pang, J.S., Leyffer, S.: On the global minimization of the value-at-risk. Optim. Methods Softw. 19, 611–631 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Prékopa, A.: On probabilistic constrained programming. In: Proceedings of the Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press, Princeton (1970) Google Scholar
  21. 21.
    Puelz, A.: Value-at-risk based portfolio optimization. In: Uryasev, S., Pardalos, P.M. (eds.) Stochastic Optimization: Algorithms and Applications, pp. 279–302. Kluwer Academic, Dordrecht (2001) Google Scholar
  22. 22.
    Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002) CrossRefGoogle Scholar
  23. 23.
    Tuy, H.: Convex Analysis and Global Optimization. Kluwer Academic, Dordrecht (1998) zbMATHGoogle Scholar
  24. 24.
    Verma, A.: VaR optimal portfolios. A global optimization approach. In: Workshop on Optimization in Finance, Coimbra (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukuba, IbarakiJapan
  2. 2.Department of Industrial and Systems EngineeringChuo UniversityTokyoJapan

Personalised recommendations