New facets for the two-stage uncapacitated facility location polytope

Article

Abstract

The two-stage uncapacitated facility location problem is considered. This problem involves a system providing a choice of depots and plants, each with an associated location cost, and a set of demand points which must be supplied, in such a way that the total cost is minimized. The formulations used until now to approach the problem were symmetric in plants and depots. In this paper the asymmetry inherent to the problem is taken into account to enforce the formulation which can be seen like a set packing problem and new facet defining inequalities for the convex hull of the feasible solutions are obtained. A computational study is carried out which illustrates the interest of the new facets. A new family of facets recently developed, termed lifted fans, is tested with success.

Keywords

Location Two-stage Set packing Facet Combinatorial optimization 

References

  1. 1.
    Aardal, K., Labbé, M., Leung, J., Queyranne, M.: On the two-level uncapacitated facility location problem. INFORMS J. Comput. 8(3), 289–301 (1996) MATHCrossRefGoogle Scholar
  2. 2.
    Barahona, F., Mahjoub, A.R.: Compositions of graphs and polyhedra II: Stable sets. SIAM J. Discrete Math. 7, 359–371 (1994) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barros, A.I., Labbé, M.: A general model for the uncapacitated facility and depot location problem. Location Sci. 2, 173–191 (1994) MATHGoogle Scholar
  4. 4.
    Baumol, W.J., Wolfe, P.: A warehouse-location problem. Oper. Res. 6, 252–263 (1958) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bloemhof-Ruwaard, J.M., Salomon, M., Van Wassenhove, L.N.: On the coordination of product and by-product flows in two level distribution networks: model formulation and solution procedures. Eur. J. Oper. Res. 79, 325–339 (1994) MATHCrossRefGoogle Scholar
  6. 6.
    Bloemhof-Ruwaard, J.M., Salomon, M., Van Wassenhove, L.N.: The capacitated distribution and waste disposal problem. Eur. J. Oper. Res. 88, 490–503 (1996) MATHCrossRefGoogle Scholar
  7. 7.
    Bumb, A.: An approximation algorithm for the maximization version of the two level uncapacitated facility location problem. Oper. Res. Lett. 29, 155–161 (2001) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cánovas, L., Landete, M., Marín, A.: New facets for the set packing polytope. Oper. Res. Lett. 27(4), 153–161 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cánovas, L., Landete, M., Marín, A.: Facet obtaining procedures for set packing problems. SIAM J. Discrete Math. 16(1), 127–155 (2003) MATHCrossRefGoogle Scholar
  10. 10.
    Chardaire, P., Lutton, J.-L., Sutter, A.: Upper and lower bounds for the two-level simple plant location problem. Ann. Oper. Res. 86, 117–140 (1999) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cheng, E., Cunningham, W.H.: Wheel inequalities for stable set polytopes. Math. Program. 77, 389–421 (1997) MathSciNetGoogle Scholar
  12. 12.
    Cho, D.C., Johnson, E.L., Padberg, M.W., Rao, M.R.: On the uncapacitated plant location problem I: Valid inequalities and facets. Math. Oper. Res. 8(4), 579–589 (1983) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Crainic, T.G., Delorme, L.: Dual-ascent procedures for multicommodity location–allocation problems with balancing requirements. Transp. Sci. 27, 90–101 (1993) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Elson, D.G.: Site location via mixed-integer programming. Oper. Res. Q. 23(1), 31–43 (1972) MATHCrossRefGoogle Scholar
  15. 15.
    Gao, L.-L., Robinson, E.P. Jr.: A dual-based optimization procedure for the two-echelon uncapacitated facility location problem. Nav. Res. Logist. 39, 191–212 (1992) MATHCrossRefGoogle Scholar
  16. 16.
    Gao, L.-L., Robinson, E.P. Jr.: Uncapacitated facility location: General solution procedure and computational experience. Eur. J. Oper. Res. 76, 410–427 (1994) MATHCrossRefGoogle Scholar
  17. 17.
    Gendron, B., Crainic, T.G.: A branch-and-bound algorithm for depot location and container fleet management. Location Sci. 3, 39–53 (1995) MATHCrossRefGoogle Scholar
  18. 18.
    Gendron, B., Crainic, T.G.: A parallel branch-and-bound algorithm for multicommodity location with balancing requirements. Comput. Oper. Res. 24, 829–847 (1997) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Geoffrion, A.M., Graves, G.W.: Multicommodity distribution system design by Benders decomposition. Manag. Sci. 20, 822–844 (1974) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Guignard, M.: Fractional vertices, cuts and facets of the simple plant location problem. Math. Progam. Study 12, 150–162 (1980) MATHMathSciNetGoogle Scholar
  21. 21.
    Hinojosa, Y., Puerto, J., Fernández, F.R.: A multiperiod two-echelon multicommodity capacitated plant location problem. Eur. J. Oper. Res. 123, 271–291 (2000) MATHCrossRefGoogle Scholar
  22. 22.
    Kaufman, L., Eede, M.V., Hansen, P.: A plant and warehouse location problem. Oper. Res. Q. 28, 547–554 (1977) MATHCrossRefGoogle Scholar
  23. 23.
    Klincewicz, J.G.: A large-scale distribution and location model. ATT Techn. J. 64(7), 1705–1730 (1985) Google Scholar
  24. 24.
    Klose, A.: An LP-based heuristic for two-stage capacitated facility location problems. J. Oper. Res. Soc. 50, 157–166 (1999) MATHCrossRefGoogle Scholar
  25. 25.
    Klose, A.: A Lagrangean relax-and-cut approach for the two-stage capacitated facility location problem. Eur. J. Oper. Res. 126, 408–421 (2000) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Marín, A.: Lower bounds for the two-stage uncapacitated facility location problem. Eur. J. Oper. Res. 179, 1126–1142 (2007) MATHCrossRefGoogle Scholar
  27. 27.
    Marín, A., Pelegrín, B.: A branch-and-bound algorithm for the transportation problem with location of p transshipment points. Comput. Oper. Res. 7, 659–678 (1997) CrossRefGoogle Scholar
  28. 28.
    Marín, A., Pelegrín, B.: The return plant location problem: Modelling and resolution. Eur. J. Oper. Res. 104(2), 375–392 (1998) MATHCrossRefGoogle Scholar
  29. 29.
    Marín, A., Pelegrín, B.: Applying Lagrangean relaxation to the resolution of two-stage location problems. Ann. Oper. Res. 86, 179–198 (1999) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Moon, S.: A profit-maximizing plant-loading model with demand fill-rate constraints. J. Oper. Res. Soc. 40(11), 1019–1027 (1989) MATHCrossRefGoogle Scholar
  31. 31.
    Nemhauser, G.L., Trotter, L.E. Jr.: Properties of vertex packing and independence system polyhedra. Math. Program. 6, 48–61 (1974) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5, 199–215 (1973) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Padberg, M.W.: A note on zero-one programming. Oper. Res. 23, 833–837 (1975) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Padberg, M.W.: On the complexity of set packing polyhedra. Ann. Discrete Math. 1, 421–434 (1977) CrossRefMathSciNetGoogle Scholar
  35. 35.
    Pirkul, H., Jayaraman, V.: Production, transportation, and distribution planning in a multi-commodity tri-echelon system. Transp. Sci. 30(4), 291–302 (1996) MATHCrossRefGoogle Scholar
  36. 36.
    Pirkul, H., Jayaraman, V.: A multi-commodity, multi-plant, capacitated facility location problem: formulation and efficient heuristic solution. Comput. Oper. Res. 25(10), 869–878 (1998) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Ro, H., Tcha, D.: A branch and bound algorithm for the two-level uncapacitated facility location problem with some side constraints. Eur. J. Oper. Res. 18, 349–358 (1984) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Tragantalerngsak, S., Holt, J., Ronnqvist, M.: Lagrangian heuristics for the two-echelon, single-source, capacitated facility location problem. Eur. J. Oper. Res. 102, 611–625 (1997) MATHCrossRefGoogle Scholar
  39. 39.
    Trotter, L.E.: A class of facet producing graphs for vertex packing polyhedra. Discrete Math. 12, 373–388 (1975) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Estadística y Matemática Aplicada, Centro de Investigación OperativaUniversidad Miguel HernándezElcheSpain
  2. 2.Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Campus de EspinardoUniversidad de MurciaMurciaSpain

Personalised recommendations