Skip to main content
Log in

How good are projection methods for convex feasibility problems?

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider simple projection methods for solving convex feasibility problems. Both successive and sequential methods are considered, and heuristics to improve these are suggested. Unfortunately, particularly given the large literature which might make one think otherwise, numerical tests indicate that in general none of the variants considered are especially effective or competitive with more sophisticated alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. Contemp. Math. 204, 1–38 (1997)

    MathSciNet  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. Algorithms 41(3), 239–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Kruk, S.G.: The method of reflection-projection for convex feasibility problems with an obtuse cone. J. Optim. Theory Appl. 120(3), 503–531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Censor, Y.: Computational acceleration of projection algorithms for the linear best approximation problem. Linear Algebr. Appl. 416, 111–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Herman, G.T.: On some optimization techniques in image reconstruction from projections. Appl. Numer. Math. 3, 365–391 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  10. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci. XVI Ser. II, Anno IX 1, 326–333 (1938)

    Google Scholar 

  11. Deutsch, F., Hundal, H.: The rate of convergence of Dykstra’s cyclic projections algorithm: the polyhedral case. Numer. Funct. Anal. Optim. 15(5–6), 537–565 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duff, I.S.: MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. 30(2), 118–144 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Stat. Assoc. 78, 837–842 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr (and SifDec), a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gould, N.I.M., Orban, D., Toint, P.L.: \(\mathsf{GALAHAD}\) —a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. U.S.S.R. Comput. Math. Math. Phys. 7(6), 1–24 (1967)

    Article  Google Scholar 

  20. Halperin, I.: The product of projection operators. Acta Sci. Math. 23, 96–99 (1962)

    MATH  MathSciNet  Google Scholar 

  21. Han, S.P.: A successive projection method. Math. Program. 40(1), 1–14 (1988)

    Article  MATH  Google Scholar 

  22. Hildreth, C.: A quadratic programming procedure. Nav. Res. Logist. Q. 4, 79–85 (1957), Erratum, ibid. p. 361

    Article  MathSciNet  Google Scholar 

  23. HSL, A collection of Fortran codes for large-scale scientific computation (2004). See http://www.cse.clrc.ac.uk/nag/hsl/

  24. Iusem, A.N., De Pierro, A.R.: A simultaneous iterative method for computing projections on polyhedra. SIAM J. Control Optim. 25(1), 231–243 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iusem, A.N., De Pierro, A.R.: On the convergence of Han’s method for convex-programming with quadratic objective. Math. Program. Ser. B 52(2), 265–284 (1991)

    Article  MATH  Google Scholar 

  26. Kaczmarz, S.: Angenährte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. Let. A 35, 355–357 (1937)

    Google Scholar 

  27. Merzlyakov, Y.I.: On a relaxation method of solving systems of linear inequalities. USSR Comput. Math. Math. Phys. 2, 504–510 (1962)

    Article  Google Scholar 

  28. Perkins, C.: A convergence analysis of Dykstra’s algorithm for polyhedral sets. SIAM J. Numer. Anal. 40(2), 792–804 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  30. De Pierro, A.R., Iusem, A.N.: A simultaneous projections method for linear inequalities. Linear Algebra Appl. 64, 243–253 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. von Neumann, J.: Functional Operators, vol. II. Princeton University Press, Princeton (1950)

    Google Scholar 

  32. Williams, J.W.J.: Algorithm 232, Heapsort. Commun. ACM 7, 347–348 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas I. M. Gould.

Additional information

This work was supported by the EPSRC grant GR/S42170.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, N.I.M. How good are projection methods for convex feasibility problems?. Comput Optim Appl 40, 1–12 (2008). https://doi.org/10.1007/s10589-007-9073-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9073-5

Keywords

Navigation