Skip to main content
Log in

Compact gradient tracking in shape optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the present paper we consider the minimization of gradient tracking functionals defined on a compact and fixed subdomain of the domain of interest. The underlying state is assumed to satisfy a Poisson equation with Dirichlet boundary conditions.

We proof that, in contrast to the situation of gradient tracking on the whole domain, the shape Hessian is not strictly H 1/2-coercive at the optimal domain which implies ill-posedness of the shape problem under consideration.

Shape functional and gradient require only knowledge of the Cauchy data of the state and its adjoint on the boundaries of the domain and the subdomain. These data can be computed by means of boundary integral equations when reformulating the underlying differential equations as transmission problems. Thanks to fast boundary element techniques, we derive an efficient algorithm to solve the problem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–219 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chenais, D., Zuazua, E.: Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95, 63–99 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Colton, D., Kress, R.: Integral equation methods in scattering theory. In: Pure and Applied Mathematics. Wiley, Chichester (1983)

    Google Scholar 

  4. Dahmen, W., Harbrecht, H., Schneider, R.: Compression techniques for boundary integral equations—optimal complexity estimates. SIAM J. Numer. Anal. 43, 2251–2271 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dambrine, M.: On variations of the shape Hessian and sufficient conditions for the stability of critical shapes. Rev. R. Acad. Cienc. Ser. A Mat. 96(1), 95–121 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Dambrine, M., Pierre, M.: About stability of equilibrium shapes. Math. Model. Numer. Anal. 34, 811–834 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Delfour, M., Zolesio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  9. Eppler, K.: Boundary integral representations of second derivatives in shape optimization. Discussiones Mathematicae. Differ. Inclusion Control Optim. 20, 63–78 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Eppler, K.: Optimal shape design for elliptic equations via BIE-methods. J. Appl. Math. Comput. Sci. 10, 487–516 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Eppler, K., Harbrecht, H.: 2nd order shape optimization using wavelet BEM. Optim. Methods Softw. 21, 135–153 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eppler, K., Harbrecht, H.: Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56, 1326–1339 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eppler, K., Harbrecht, H.: Coupling of FEM and BEM in shape optimization. Numer. Math. 104, 47–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eppler, K., Harbrecht, H., Schneider, R.: On convergence in elliptic shape optimization. SIAM J. Control Optim. 45, 61–83 (2007)

    Article  MathSciNet  Google Scholar 

  15. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)

    MATH  Google Scholar 

  16. Grossmann, Ch., Terno, J.: Numerik der Optimierung. Teubner, Stuttgart (1993)

    MATH  Google Scholar 

  17. Guillaume, Ph., Masmoudi, M.: Computation of high order derivatives in optimal shape design. Numer. Math. 67, 231–250 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hackbusch, W.: Integral Equations. Theory and Numerical Treatment. International Series of Numerical Mathematics, vol. 120. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  19. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations—implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Haslinger, J., Neitaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996)

    MATH  Google Scholar 

  21. Henrot, A., Villemin, G.: An optimum design problem in magnetostatics. Math. Model. Numer. Anal. 36, 223–239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, New York (1983)

    Google Scholar 

  23. Hsiao, G., Wendland, W.: A finite element method for some equations of first kind. J. Math. Anal. Appl. 58, 449–481 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lukáš, D.: On solution to an optimal shape design problem in 3-dimensional linear magnetostatics. Appl. Math. 49, 441–464 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Clarendon, Oxford (2001)

    MATH  Google Scholar 

  27. Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36, 11.1–11.25 (2004)

    Article  MathSciNet  Google Scholar 

  28. Murat, F., Simon, J.: Étude de problèmes d’optimal design. In: Céa, J. (ed.) Optimization Techniques, Modeling and Optimization in the Service of Man. Lecture Notes in Computer Science, vol. 41, pp. 54–62. Springer, Berlin (1976)

    Google Scholar 

  29. Peichl, G.H., Ring, W.: Optimization of the shape of an electromagnet: Regularity results. Adv. Math. Sci. Appl. 8, 997–1014 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, New York (1983)

    Google Scholar 

  31. Schneider, R.: [De]Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung Großer Vollbesetzter Gleichungssyteme. Teubner, Stuttgart (1998)

    Google Scholar 

  32. Simon, J.: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2, 649–687 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Eppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppler, K., Harbrecht, H. Compact gradient tracking in shape optimization. Comput Optim Appl 39, 297–318 (2008). https://doi.org/10.1007/s10589-007-9061-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9061-9

Keywords

Navigation