Skip to main content
Log in

The Lagrange method for the regularization of discrete ill-posed problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In many science and engineering applications, the discretization of linear ill-posed problems gives rise to large ill-conditioned linear systems with the right-hand side degraded by noise. The solution of such linear systems requires the solution of minimization problems with one quadratic constraint, depending on an estimate of the variance of the noise. This strategy is known as regularization. In this work, we propose a modification of the Lagrange method for the solution of the noise constrained regularization problem. We present the numerical results of test problems, image restoration and medical imaging denoising. Our results indicate that the proposed Lagrange method is effective and efficient in computing good regularized solutions of ill-conditioned linear systems and in computing the corresponding Lagrange multipliers. Moreover, our numerical experiments show that the Lagrange method is computationally convenient. Therefore, the Lagrange method is a promising approach for dealing with ill-posed problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avriel, M.: Nonlinear Programming: Analysis and Methods. Dover, New York (2003)

    MATH  Google Scholar 

  3. Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear Algebra Appl. 9, 347–358 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calvetti, D., Golub, G., Reichel, L.: Estimation of the L-curve via Lanczos bidiagonalization. BIT 39, 603–619 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, R.H., Chan, T.F., Zhou, H.M.: Continuation method for total variation denoising problems. Technical Report 95-18, University of California, Los Angeles (1995)

  8. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dobson, D., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dobson, D.C., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56, 1181–1198 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–422 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eisenstat, S.C., Walker, H.F.: Choosing the forcing term in an inexact Newton method. SIAM J. Sci. Comput. 17, 16–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Engl, H.W.: Regularization methods for the stable solution of inverse problems. Surv. Math. Ind. 3, 71–143 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996)

    MATH  Google Scholar 

  16. Frommer, A., Maass, P.: Fast CG-based methods for Tikhonov-Phillips problems. SIAM J. Sci. Comput. 20, 1831–1850 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golub, G., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gutman, S.: Identification of discontinuous parameters in flow equations. SIAM J. Control Optim. 28, 1049–1060 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Alg. 6, 1–35 (1994)

    Article  MATH  Google Scholar 

  22. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Google Scholar 

  23. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  24. Kilmer, M.E., O’Leary, D.P.: Choosing regularization parameters in iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl. 22, 1204–1221 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  26. Nagy, J.G., Palmer Lee, K., Perrone, L.: Iterative methods for image restoration: a Matlab object oriented approach. Numer. Alg. 36, 73–93 (2003)

    Article  Google Scholar 

  27. Nagy, J.G., Plemmons, R.J., Torgersen, T.C.: Iterative image restoration using approximate inverse preconditioners. IEEE Trans. Image Proc. 5(7), 1151–1162 (1996)

    Article  Google Scholar 

  28. Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40, 636–666 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  30. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)

    MATH  MathSciNet  Google Scholar 

  32. Roggemann, M.C., Welsh, B.: Imaging Through Turbulence. CRC Press, Boca Raton (1996)

    Google Scholar 

  33. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  34. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  35. Vogel, C.R.: Nonsmooth regularization. In: Engl, H.W., Louis, A.K., Rundell, W. (eds.) Inverse Problems in Geophysical Applications, pp. 1–11. SIAM, Philadelphia (1997)

    Google Scholar 

  36. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  37. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vogel, C.R., Oman, M.E.: Fast, robust total variation–based reconstruction of noisy, blurred images. IEEE Trans. Image Proc. 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wahba, G.: Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. Numer. Anal. 14, 651–667 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zangwill, W.I.: Nonlinear Programming: A Unified Approach. Prentice Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Landi.

Additional information

This work was supported by the Italian FIRB Project “Parallel algorithms and Nonlinear Numerical Optimization” RBAU01JYPN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, G. The Lagrange method for the regularization of discrete ill-posed problems. Comput Optim Appl 39, 347–368 (2008). https://doi.org/10.1007/s10589-007-9059-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9059-3

Keywords

Navigation