Skip to main content
Log in

Scaled conjugate gradient algorithms for unconstrained optimization

Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this work we present and analyze a new scaled conjugate gradient algorithm and its implementation, based on an interpretation of the secant equation and on the inexact Wolfe line search conditions. The best spectral conjugate gradient algorithm SCG by Birgin and Martínez (2001), which is mainly a scaled variant of Perry’s (1977), is modified in such a manner to overcome the lack of positive definiteness of the matrix defining the search direction. This modification is based on the quasi-Newton BFGS updating formula. The computational scheme is embedded in the restart philosophy of Beale–Powell. The parameter scaling the gradient is selected as spectral gradient or in an anticipative manner by means of a formula using the function values in two successive points. In very mild conditions it is shown that, for strongly convex functions, the algorithm is global convergent. Preliminary computational results, for a set consisting of 500 unconstrained optimization test problems, show that this new scaled conjugate gradient algorithm substantially outperforms the spectral conjugate gradient SCG algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Andrei, N.: A new gradient descent method for unconstrained optimization. ICI Technical report (March 2004)

  2. Barzilai, J., Borwein, J.M.: Two point step size gradient method. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birgin, E., Martínez, J.M.: A spectral conjugate gradient method for unconstrained optimization. Appl. Math. Optim. 43, 117–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995)

    Article  MATH  Google Scholar 

  5. Cauchy, A.: Méthodes générales pour la résolution des systèmes d’équations simultanées. C. R. Acad. Sci. Paris 25, 536–538 (1847)

    Google Scholar 

  6. Dai, Y.H., Liao, L.Z.: New conjugate conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43, 87–101 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fletcher, R.: On the Barzilai–Borwein method. Numerical analysis report NA/207 (2001)

  8. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golub, G.H., O’Leary, D.P.: Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Rev. 31, 50–102 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)

    MATH  Google Scholar 

  12. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. Sect. B 48, 409–436 (1952)

    MathSciNet  Google Scholar 

  13. Perry, J.M.: A class of conjugate gradient algorithms with a two step variable metric memory. Discussion paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University (1977)

  14. Polak, E., Ribière, G.: Note sur la convergence de méthods de directions conjugées. Rev. Française Inform. Res. Opér. 16, 35–43 (1969)

    Google Scholar 

  15. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Math. Program. 12, 241–254 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shanno, D.F.: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3, 244–256 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shanno, D.F.: On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal. 15, 1247–1257 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shanno, D.F., Phua, K.H.: Algorithm 500. Minimization of unconstrained multivariate functions [E4]. ACM Trans. Math. Softw. 2, 87–94 (1976)

    Article  MATH  Google Scholar 

  20. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wolfe, P.: Convergence conditions for ascent methods II: some corrections. SIAM Rev. 13, 185–188 (1971)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neculai Andrei.

Additional information

The author was awarded the Romanian Academy Grant 168/2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrei, N. Scaled conjugate gradient algorithms for unconstrained optimization. Comput Optim Appl 38, 401–416 (2007). https://doi.org/10.1007/s10589-007-9055-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9055-7

Keywords

Navigation