Skip to main content

An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming


One perceived deficiency of interior-point methods in comparison to active set methods is their inability to efficiently re-optimize by solving closely related problems after a warmstart. In this paper, we investigate the use of a primal–dual penalty approach to overcome this problem. We prove exactness and convergence and show encouraging numerical results on a set of linear and mixed integer programming problems.

This is a preview of subscription content, access via your institution.


  1. Anitescu, M.: Nonlinear programs with unbounded Lagrange multiplier sets. Technical report ANL/MCS-P793-0200, Argonne National Labs

  2. Benson, H.Y., Sen, A., Shanno, D.F., Vanderbei, R.J.: Interior point algorithms, penalty methods and equilibrium problems. Comput. Optim. Appl. 34(2), 155–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Jamming and comparative numerical testing. Math. Program. A 99(1), 35–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Research Analysis Corporation, McLean, Virginia (1968). Republished in 1990 by SIAM, Philadelphia

    MATH  Google Scholar 

  5. Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)

    MATH  Google Scholar 

  6. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Scientific Press, Danvers (1993)

    Google Scholar 

  7. Freund, R.M.: Theoretical efficiency of a shifted barrier function algorithm for linear programming. Linear Algebra Appl. 152, 19–41 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gondzio, J.: Warm start of the primal–dual method applied in the cutting plane scheme. Math. Program. 83, 125–143 (1998)

    MathSciNet  Google Scholar 

  9. Gondzio, J., Grothey, A.: Reoptimization with the primal–dual interior point method. SIAM J. Optim. 13(3), 842–864 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gondzio, J., Vial, J.-Ph.: Warm start and ε-subgradients in cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14, 17–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gould, N.I.M., Orban, D., Toint, P.L.: An interior-point l1-penalty method for nonlinear optimization. Technical report RAL-TR-2003-022, Rutherford Appleton Laboratory Chilton, Oxfordshire, UK (November 2003)

  12. Hillier, F.S., Lieberman, G.J.: Introduction to Mathematical Programming, 2nd edn. McGraw-Hill, New York (1977)

    Google Scholar 

  13. Kojima, M., Megiddo, N., Mizuno, S.: A primal–dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–400 (1993)

    Article  MathSciNet  Google Scholar 

  14. Leyffer, S.: Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Technical report NA-182, Department of Mathematics, University of Dundee (August 1998)

  15. Leyffer, S., Lopez-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. Technical report OTC 2004-10, Northwestern University, Evanston, IL (December 2004)

  16. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational state of the art. ORSA J. Comput. 6, 1–14 (1994)

    MATH  MathSciNet  Google Scholar 

  17. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  18. Nash, S.G., Sofer, A.: Linear and Nonlinear Programming. McGraw-Hill, New York (1996)

    Google Scholar 

  19. Polyak, R.: Modified barrier functions (theory and methods). Math. Program. 54, 177–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shepp, L.A., Vanderbei, R.J.: The complex zeros of random polynomials. Trans. Am. Math. Soc. 347(11), 4365–4384 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vanderbei, R.J.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw. 12, 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  22. Vanderbei, R.J., Shanno, D.F.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yildirim, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12(3), 782–810 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hande Y. Benson.

Additional information

Research of the first author is sponsored by ONR grant N00014-04-1-0145. Research of the second author is supported by NSF grant DMS-0107450.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benson, H.Y., Shanno, D.F. An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming. Comput Optim Appl 38, 371–399 (2007).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Interior-point methods
  • Linear programming
  • Warmstarting
  • Penalty methods