Skip to main content
Log in

Nonlinear Rescaling as Interior Quadratic Prox Method in Convex Optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A class Ψ of strictly concave and twice continuously differentiable functions ψ: RR with particular properties is used for constraint transformation in the framework of a Nonlinear Rescaling (NR) method with “dynamic” scaling parameter updates. We show that the NR method is equivalent to the Interior Quadratic Prox method for the dual problem in a rescaled dual space.

The equivalence is used to prove convergence and to estimate the rate of convergence of the NR method and its dual equivalent under very mild assumptions on the input data for a wide class Ψ of constraint transformations. It is also used to estimate the rate of convergence under strict complementarity and under the standard second order optimality condition.

We proved that for any ψ ∈ Ψ, which corresponds to a well-defined dual kernel ϕ = −ψ*, the NR method applied to LP generates a quadratically convergent dual sequence if the dual LP has a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, R. Cominetti, and M. Haddou, “Asymptotic analysis of penalty and barrier methods in convex and linear programming,” Math. Oper. Res., vol. 22, pp. 43–62, 1997.

  2. A. Auslender, M. Teboulle, and S. Ben-Tiba, “Interior proximal and multipliers methods based on second-order homogeneous kernels,” Math. Oper. Res., vol. 24, no. 3, pp. 645–668, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.P. Bendsøe, A. Ben-Tal, and J. Zowe, “Optimization methods for truss geometry and topology design,” Structural Optimization, vol. 7, pp. 141–159, 1994.

    Article  Google Scholar 

  4. A. Ben-Tal and M. Zibulevsky, “Penalty-barrier methods for convex programming problems,” SIAM J. Optim., vol. 7, pp. 347–366, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Ben-Tal, B. Yuzefovich, and M. Zibulevsky, “Penalty-barrier multipliers methods for minimax and constrained smooth convex optimization,” Optimization Laboratory, Technion, Israel, Research Report 9-92, 1992.

  6. M. Breitfelt and D. Shanno, “Experience with modified log-barrier method for nonlinear programming,” Ann. Oper. Res., vol. 62, pp. 439–464, 1996.

    Article  MathSciNet  Google Scholar 

  7. D. Bertsekas, Constrained Optimization and Lagrange Multipliers Methods. Academic Press: New York, 1982.

    Google Scholar 

  8. A. Fiacco and G. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Classics in Applied Mathematics. SIAM: Philadelphia, PA. 1990.

    Google Scholar 

  9. O. Guler, “On the convergence of the proximal point algorithm for convex minimization,” SIAM J. Control Optim., vol. 29, pp. 403–419, 1991.

    Article  MathSciNet  Google Scholar 

  10. M.R. Hestenes, “Multipliers and gradient methods,” J. Optim. Theory Appl., vol. 4, pp. 303–320, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Hoffman, “On approximate solution of system of linear inequalities,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 263–265, 1952.

    MathSciNet  Google Scholar 

  12. K. Knopp, Infinite Sequence and Series, Dover Publication Inc.: New York, 1956.

  13. B.W. Kort and D.P. Bertsekas, “Multiplier methods for convex programming,” in Proc. IEEE Conf. on Decision and Control, San Diego, CA., 1973, pp. 428–432.

  14. B. Martinet, “Regularization d’inequations variationelles par approximations successive,” Revue Francaise d’Automatique et Informatique Rechershe Operationelle, vol. 4, pp. 154–159, 1970.

    MathSciNet  Google Scholar 

  15. A. Melman and R. Polyak, “The Newton modified barrier method for QP problems,” Ann. Oper. Res., vol. 62, pp. 465–519, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Moreau, “Proximité et dualité dans un espace Hilbertien,” Bull. Soc. Math. France, vol. 93, pp. 273–299, 1965.

    MathSciNet  MATH  Google Scholar 

  17. S. Nash, R. Polyak, and A. Sofer, “A numerical comparison of barrier and modified barrier method for large-scale bound-constrained optimization,” in Large Scale Optimization, State of the Art. W. Hager, D. Hearn, P. Pardalos (Eds.), Kluwer Academic Publishers, 1994, pp. 319–338.

  18. B. Polyak, Introduction to Optimization, Software Inc.: NY, 1987.

    Google Scholar 

  19. R. Polyak, “Modified barrier functions (theory and methods),” Math. Programming, vol. 54, pp. 177–222, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Polyak, “Log-sigmoid multipliers method in constrained optimization,” Ann. Oper. Res., vol. 101, pp. 427–460, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Polyak, “Nonlinear rescaling vs. smoothing technique in convex optimization,” Math. Programming, vol. 92, pp. 197–235, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Polyak and I. Griva, “Primal-dual nonlinear rescaling methods for convex optimization,” J. Optim. Theory Appl., vol 122, pp 111–156, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Polyak and M. Teboulle, “Nonlinear rescaling and proximal-like methods in convex optimization,” Math. Programming, vol. 76, pp. 265–284, 1997.

    Article  MathSciNet  Google Scholar 

  24. R. Polyak, I. Griva, and J. Sobieski, “The Newton log-sigmoid method in constrained optimization. a collection of technical papers,” 7th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization, vol. 3, 1998, pp. 2193–2201.

  25. M.J.D. Powell, “A method for nonlinear constraints in minimization problems,” in Fletcher (Ed.), Optimization, London Academic Press, 1969, pp. 283–298.

    Google Scholar 

  26. R.T. Rockafellar, “A dual approach to solving nonlinear programming problems by unconstrainted minimization,” Math. Programming, vol. 5, pp. 354–373, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  27. R.T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Control Optim., vol. 14, pp. 877–898, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  28. R.T. Rockafellar, “Augmented Lagrangians and applications of the proximal points algorithms in convex programming,” Math. Oper. Res., vol. 1, pp. 97–116, 1976.

    MathSciNet  MATH  Google Scholar 

  29. D.F. Shanno and R.J. Vanderbei, “An interior point algorithm for nonconvex nonlinear programming,” COAP, vol. 13, pp. 231–252, 1999.

    MathSciNet  MATH  Google Scholar 

  30. P. Tseng and D. Bertsekas, “On the convergence of the exponential multipliers method for convex programming,” Math. Programming, vol. 60, pp. 1–19, 1993.

    Article  MathSciNet  Google Scholar 

  31. S. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.

  32. Y. Zhang, “Solving large-scale linear programs by interior-point methods under matlab environment,” Dept. of Computational and Applied Mathmatics, Rice University, Houston, TX 77005, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Elijah Polak on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyak, R.A. Nonlinear Rescaling as Interior Quadratic Prox Method in Convex Optimization. Comput Optim Applic 35, 347–373 (2006). https://doi.org/10.1007/s10589-006-9759-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-006-9759-0

Keywords

Navigation