Skip to main content
Log in

Spectral radius and Hamiltonicity of graphs with large minimum degree

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let G be a graph of order n and λ(G) the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G. One of the main results of the paper is the following theorem

Let k ≥ 2, nk 3 + k + 4, and let G be a graph of order n, with minimum degree δ(G) ≥ k. If

$$\lambda \left( G \right) \geqslant n - k - 1$$

, then G has a Hamiltonian cycle, unless G = K 1∨(K nk−1+K k ) or G = K k ∨(K n−2k + \({\bar K_k}\) ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Benediktovich: Spectral condition for Hamiltonicity of a graph. Linear Algebra Appl. 494 (2016), 70–79.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bollobás: Modern Graph Theory. Graduate Texts in Mathematics 184, Springer, New York, 1998.

    Google Scholar 

  3. J. A. Bondy, V. Chvátal: A method in graph theory. Discrete Math. 15 (1976), 111–135.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Butler, F. Chung: Small spectral gap in the combinatorial Laplacian implies Hamiltonian. Ann. Comb. 13 (2010), 403–412.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Chvátal: On Hamilton’s ideals. J. Comb. Theory, Ser. B 12 (1972), 163–168.

    Article  MATH  Google Scholar 

  6. G. A. Dirac: Some theorems on abstract graphs. Proc. Lond. Math. Soc., III. Ser. 2 (1952), 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Erdős: Remarks on a paper of Pósa. Publ. Math. Inst. Hung. Acad. Sci., Ser. A 7 (1962), 227–229.

    MATH  Google Scholar 

  8. Y.-Z. Fan, G.-D. Yu: Spectral condition for a graph to be Hamiltonian with respect to normalized Laplacian. Preprint available at Arxiv 1207.6824v1 (2012), 12 pages.

    Google Scholar 

  9. M. Fiedler, V. Nikiforov: Spectral radius and Hamiltonicity of graphs. Linear Algebra Appl. 432 (2010), 2170–2173.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Hong, J.-L. Shu, K. Fang: A sharp upper bound of the spectral radius of graphs. J. Comb. Theory, Ser. B 81 (2001), 177–183.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Krivelevich, B. Sudakov: Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42 (2003), 17–33.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Li: Laplacian spectral radius and some Hamiltonian properties of graphs. Appl. Math. E-Notes (electronic only) 14 (2014), 216–220; corrigendum, ibid. 15 (2015), 216–217.

    MathSciNet  MATH  Google Scholar 

  13. B. Li, B. Ning: Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamilton cycles. Linear Multilinear Algebra. DOI:10.1080/03081087.2016.1151854.

  14. R. Liu, W. C. Shiu, J. Xue: Sufficient spectral conditions on Hamiltonian and traceable graphs. Linear Algebra Appl. 467 (2015), 254–266.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Lu, H. Liu, F. Tian: Spectral radius and Hamiltonian graphs. Linear Algebra Appl. 437 (2012), 1670–1674.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Nikiforov: Some inequalities for the largest eigenvalue of a graph. Comb. Probab. Comput. 11 (2002), 179–189.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Ning, J. Ge: Spectral radius and Hamiltonian properties of graphs. Linear Multilinear Algebra 63 (2015), 1520–1530.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Ore: Hamilton connected graphs. J. Math. Pures Appl., IX. Sér. 42 (1963), 21–27.

    MathSciNet  MATH  Google Scholar 

  19. O. Ore: Arc coverings of graphs. Ann. Mat. Pura Appl., IV. Ser. 55 (1961), 315–321.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Zhou: Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl. 432 (2010), 566–570.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Nikiforov.

Additional information

Dedicated to the memory of Miroslav Fiedler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, V. Spectral radius and Hamiltonicity of graphs with large minimum degree. Czech Math J 66, 925–940 (2016). https://doi.org/10.1007/s10587-016-0301-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-016-0301-y

Keywords

MSC 2010

Navigation