Skip to main content
Log in

On some properties of the Laplacian matrix revealed by the RCM algorithm

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function “symrcm” of MATLAB. Some examples illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Benzi, D. B. Szyld, A. C. N. van Duin: Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput. 20 (1999), 1652–1670.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Boley, G. Ranjan, Z.-L. Zhang: Commute times for a directed graph using an asymmetric Laplacian. Linear Algebra Appl. 435 (2011), 224–242.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bolten, S. Friedhoff, A. Frommer, M. Heming, K. Kahl: Algebraic multigrid methods for Laplacians of graphs. Linear Algebra Appl. 434 (2011), 2225–2243.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Cuthill, J. McKee: Reducing the bandwidth of sparse symmetric matrices. Proc. 24th Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New York, 1969. pp. 157–172, doi:10.1145/800195.805928.

    Google Scholar 

  5. N. M. M. de Abreu: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423, (2007), 53–73.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. M. Del Corso, F. Romani: Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices. Numer. Algorithms 28 (2001), 117–136.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Fiedler: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298–305.

    MathSciNet  MATH  Google Scholar 

  8. M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619–633.

    MathSciNet  MATH  Google Scholar 

  9. S. Fortunato: Community detection in graphs. Phys. Rep. 486 (2010), 75–174.

    Article  MathSciNet  Google Scholar 

  10. J. A. George: Computer Implementation of the Finite Element Method. Doctoral Dissertation, Stanford University, Stanford, 1971.

    Google Scholar 

  11. A. George, J. W.-H. Liu: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, 1981.

    Google Scholar 

  12. J. R. Gilbert, C. Moler, R. Schreiber: Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 13 (1992), 333–356.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. L. Gross, J. Yellen, eds.: Handbook of Graph Theory. Discrete Mathematics and Its Applications, CRC Press, Boca Raton, 2004.

    Google Scholar 

  14. R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  15. D. Jungnickel: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics 5, Springer, Berlin, 2008.

    Google Scholar 

  16. M. Juvan, B. Mohar: Laplace eigenvalues and bandwidth-type invariants of graphs. J. Graph Theory, 17 (1993), 393–407.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Kumfert, A. Pothen: Two improved algorithms for envelope and wavefront reduction. BIT 37 (1997), 559–590.

    Article  MathSciNet  MATH  Google Scholar 

  18. W-H. Liu, A. H. Sherman: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13 (1976), 198–213.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Mohar: The Laplacian spectrum of graphs. Graph theory, Combinatorics, and Applications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Applications of Graphs, Kalamazoo, Michigan, 1988 (Y. Alavi et all, eds.). John Wiley & Sons, New York, 1991, pp. 871–898.

    Google Scholar 

  20. J. J. Molitierno: The spectral radius of submatrices of Laplacian matrices for graphs with cut vertices. Linear Algebra Appl. 428 (2008), 1987–1999.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Mueller, B. Martin, A. Lumsdaine: A comparison of vertex ordering algorithms for large graph visualization. Visualization. Asia-Pacific Symposium on Visualization 2007, Sydney, Australia, 2007, pp. 141–148, doi: 10.1109/APVIS.2007.329289.

    Chapter  Google Scholar 

  22. M. C. V. Nascimento, A. De Carvalho: Spectral methods for graph clustering—a survay. Eur. J. Oper. Res. 211 (2011), 221–231.

    Article  MATH  Google Scholar 

  23. M. E. J. Newman: Networks. An Introduction. Oxford University Press, Oxford, 2010.

    Book  MATH  Google Scholar 

  24. A. Pothen, H. D. Simon, K. P. Liou: Partitioning sparse matrices with eigenvector of graphs. SIAM J. Matrix Anal. Appl. 11 (1990), 430–452.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Rebollo, C. Carrascosa, A. Palomares, F. Pedroche: Some examples of detection of connected components in undirected graphs by using the Laplacian matrix and the RCM algorithm. Int. J. Complex Systems in Science 2 (2012), 11–15.

    Google Scholar 

  26. J. K. Reid, J. A. Scott: Reducing the total bandwidth of a sparse unsymmetric matrix. Siam J. Matrix Anal. Appl. 28 (2006), 805–821.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Saad: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, 2003.

    Book  MATH  Google Scholar 

  28. S. E. Schaeffer: Graph clustering. Comput. Sci. Rev. 1 (2007), 27–64.

    Article  MATH  Google Scholar 

  29. R. Tarjan: Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972), 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. S. Varga: Matrix Iterative Analysis. Springer Series in Computational Mathematics 27, Springer, Berlin, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Pedroche.

Additional information

Dedicated to the memory of Miroslav Fiedler

The research has been supported by Spanish DGI grant MTM2010-18674, Consolider Ingenio CSD2007-00022, PROMETEO 2008/051, OVAMAH TIN2009-13839-C03-01, and PAID-06-11-2084.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedroche, F., Rebollo, M., Carrascosa, C. et al. On some properties of the Laplacian matrix revealed by the RCM algorithm. Czech Math J 66, 603–620 (2016). https://doi.org/10.1007/s10587-016-0281-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-016-0281-y

Keywords

MSC 2010

Navigation