Skip to main content
Log in

On the Diophantine equation x 2kxy + y 2 − 2n = 0

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this study, we determine when the Diophantine equation x 2kxy+y 2−2n = 0 has an infinite number of positive integer solutions x and y for 0 ⩽ n ⩽ 10. Moreover, we give all positive integer solutions of the same equation for 0 ⩽ n ⩽ 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2kxy + y 2 − 2n = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. De Leon: Pell’s equations and Pell number triples. Fibonacci Q. 14 (1976), 456–460.

    Google Scholar 

  2. M. J. Jacobson, H. C. Williams: Solving the Pell Equation. CMS Books in Mathematics. Springer, New York, 2009.

    MATH  Google Scholar 

  3. J. P. Jones: Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75–86.

    MathSciNet  MATH  Google Scholar 

  4. D. Kalman, R. Mena: The Fibonacci numbers-exposed. Math. Mag. 76 (2003), 167–181.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Keskin: Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60 (2010), 2225–2230.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Keskin, O. Karaatli, Z. Şiar: On the Diophantine equation x 2kxy + y 2 + 2n = 0. Miskolc Math. Notes 13 (2012), 375–388.

    MathSciNet  MATH  Google Scholar 

  7. R. Keskin, B. Demirtürk: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences. Ars Comb. 111 (2013), 161–179.

    Google Scholar 

  8. A. Marlewski, P. Zarzycki: Infinitely many solutions of the Diophantine equation x 2kxy + y 2 + x = 0. Comput. Math. Appl. 47 (2004), 115–121.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. L. McDaniel: Diophantine representation of Lucas sequences. Fibonacci Q. 33 (1995), 59–63.

    MathSciNet  MATH  Google Scholar 

  10. R. Melham: Conics which characterize certain Lucas sequences. Fibonacci Q. 35 (1997), 248–251.

    MathSciNet  MATH  Google Scholar 

  11. T. Nagell: Introduction to Number Theory. John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951.

    MATH  Google Scholar 

  12. P. Ribenboim: My Numbers, My Friends. Popular Lectures on Number Theory. Springer, New York, 2000.

    MATH  Google Scholar 

  13. J. P. Robertson: Solving the generalized Pell equation x 2Dy 2 = N. http://hometown.aol.com/jpr2718/pell.pdf (2003).

  14. S. Robinowitz: Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers. (G.E. Bergum, et al., eds.). vol. 6, Kluwer Acadademic Publishers, Dordrecht, 1996, pp. 389–408.

    Google Scholar 

  15. P. Yuan, Y. Hu: On the Diophantine equation x 2kxy + y 2 + lx = 0, l ∈ {1, 2, 4}. Comput. Math. Appl. 61 (2011), 573–577.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refik Keskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keskin, R., Şiar, Z. & Karaatli, O. On the Diophantine equation x 2kxy + y 2 − 2n = 0. Czech Math J 63, 783–797 (2013). https://doi.org/10.1007/s10587-013-0052-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-013-0052-y

Keywords

MSC 2010

Navigation