Skip to main content

Slant and pseudo-slant submanifolds in LCS-manifolds

Abstract

We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudoslant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Atçeken: Slant submanifolds of a Riemannian product manifold. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 215–224.

    MathSciNet  MATH  Google Scholar 

  2. [2]

    R. L. Bishop, B. O’Neill: Manifolds of negative curvature. Trans. Am. Math. Soc. 145 (1969), 1–49.

    MathSciNet  MATH  Article  Google Scholar 

  3. [3]

    J. L. Cabrerizo, A. Carriazo, L.M. Fernández, M. Fernández: Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78 (1999), 183–199.

    MathSciNet  MATH  Article  Google Scholar 

  4. [4]

    J. L. Cabrerizo, A. Carriazo, L.M. Fernández, M. Fernández: Structure on a slant submanifold of a contact manifold. Indian J. Pure Appl. Math. 31 (2000), 857–864.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    A. Carriazo, L.M. Fernández, M.B. Hans-Uber: Some slant submanifolds of S-manifolds. Acta Math. Hung. 107 (2005), 267–285.

    MATH  Article  Google Scholar 

  6. [6]

    B.Y. Chen: Geometry of Slant Submanifolds. Kath. Univ. Leuven, Dept. of Mathematics, Leuven, 1990.

    MATH  Google Scholar 

  7. [7]

    V.A. Khan, M.A. Khan: Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math. 38 (2007), 31–42.

    MathSciNet  MATH  Google Scholar 

  8. [8]

    A. Lotta: Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 39 (1996), 183–198.

    MATH  Google Scholar 

  9. [9]

    K. Matsumoto, I. Mihai: On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor, New Ser. 47 (1988), 189–197.

    MathSciNet  MATH  Google Scholar 

  10. [10]

    I. Mihai, B.Y. Chen: Classification of quasi-minimal slant surfaces in Lorentzian complex space forms. Acta Math. Hung. 122 (2009), 307–328.

    MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    N. Papaghiuc: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouǎ, Mat. 40 (1994), 55–61.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    A.A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305–314.

    MathSciNet  MATH  Google Scholar 

  13. [13]

    A.A. Shaikh, K.K. Baishya: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129–132.

    MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    A.A. Shaikh, H.Y. Kim, S.K. Hui: On Lorentzian quasi-Einstein manifolds. J. Korean Math. Soc. 48 (2011), 669–689.

    MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    K. Yano: Concircular geometry. 1. Concircular transformations. Proc. Imp. Acad. Jap. 16 (1940), 195–200.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehmet Atçeken.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atçeken, M., Hui, S.K. Slant and pseudo-slant submanifolds in LCS-manifolds. Czech Math J 63, 177–190 (2013). https://doi.org/10.1007/s10587-013-0012-6

Download citation

Keywords

  • slant submanifold
  • pseudo-slant submanifold
  • LCS-manifold

MSC 2010

  • 53C15
  • 53C25