Skip to main content
Log in

Smoothness for the collision local time of two multidimensional bifractional Brownian motions

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \({B^{{H_i},{K_i}}} = \{ B_t^{{H_i},{K_i}},t \ge 0\} ,{\rm{ }}i = 1,2\) be two independent, d-dimensional bifractional Brownian motions with respective indices H i ∈ (0, 1) and K i ∈ (0, 1]. Assume d ⩾ 2. One of the main motivations of this paper is to investigate smoothness of the collision local time

$${l_T} = \int_0^T {\delta (B_s^{{H_1},{K_1}} - B_s^{{H_2},{K_2}}} )ds,{\rm{ }}T > 0,$$

, where δ denotes the Dirac delta function. By an elementary method we show that l T is smooth in the sense of Meyer-Watanabe if and only if min{H 1 K 1,H 2 K 2} < 1/(d + 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. An, L. Yan: Smoothness for the collision local time of fractional Brownian motion. Preprint, 2010.

  2. C. Chen, L. Yan: Remarks on the intersection local time of fractional Brownian motions. Stat. Probab. Lett. 81 (2011), 1003–1012.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Es-Sebaiy, C.A. Tudor: Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch. Dyn. 7 (2007), 365–388.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ch. Houdré, J. Villa: An example of infinite dimensional quasi-helix. Stochastic models. Seventh symposium on probability and stochastic processes, June 23–28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195–201.

  5. Y. Hu: Self-intersection local time of fractional Brownian motion — via chaos expansion. J. Math, Kyoto Univ. 41 (2001), 233–250.

    MathSciNet  MATH  Google Scholar 

  6. Y. Hu: Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Am. Math. Soc. 825 (2005).

  7. Y. Jiang, Y. Wang: Self-intersection local times and collision local times of bifractional Brownian motions. Sci. China, Ser. A 52 (2009), 1905–1919.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Kruk, F. Russo, C.A. Tudor: Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249 (2007), 92–142.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Lei, D. Nualart: A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 79 (2009), 619–624.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Mishura: Stochastic Calculus for Fractional Brownian Motions and Related Processes. Lecture Notes in Mathematics 1929. Springer, Berlin, 2008.

    Book  Google Scholar 

  11. D. Nualart, S. Ortiz-Latorre: Intersection local time for two independent fractional Brownian motions. J. Theor. Probab. 20 (2007), 759–767.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Nualart: The Malliavin Calculus and Related Topics. 2nd ed. Probability and Its Applications. Springer, Berlin, 2006.

    MATH  Google Scholar 

  13. F. Russo, C.A. Tudor: On bifractional Brownian motion. Stochastic Processes Appl. 116 (2006), 830–856.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Shen, L. Yan: Smoothness for the collision local times of bifractional Brownian motions. Sci. China, Math. 54 (2011), 1859–1873.

    Article  MathSciNet  MATH  Google Scholar 

  15. C.A. Tudor, Y. Xiao: Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007), 1023–1052.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Watanabe: Lectures on Stochastic Differential Equations and Malliavin Calculus. Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin, 1984.

    MATH  Google Scholar 

  17. L. Yan, J. Liu, C. Chen: On the collision local time of bifractional Brownian motions. Stoch. Dyn. 9 (2009), 479–491.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Yan, B. Gao, J. Liu: The Bouleau-Yor identity for a bi-fractional Brownian motion. To appear in Stochastics 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Shen.

Additional information

Guangjun Shen is partially supported by National Natural Science Foundation of China (11271020), Natural Science Foundation of Anhui Province (1208085MA11) and Key Natural Science Foundation of Anhui Educational Committee (KJ2011A139), Litan Yan is partially supported by National Natural Science Foundation of China (11171062), Innovation Program of Shanghai Municipal Education Commission (12ZZ063).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, G., Yan, L. & Chen, C. Smoothness for the collision local time of two multidimensional bifractional Brownian motions. Czech Math J 62, 969–989 (2012). https://doi.org/10.1007/s10587-012-0077-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0077-7

Keywords

MSC 2010

Navigation