Skip to main content
Log in

Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let q, h, a, b be integers with q > 0. The classical and the homogeneous Dedekind sums are defined by

$$s(h,q) = \sum\limits_{j = 1}^q {\left( {\left( {{j \over q}} \right)} \right)\left( {\left( {{{hj} \over q}} \right)} \right),{\rm{ }}s(a,b,q) = \sum\limits_{j = 1}^q {\left( {\left( {{{aj} \over q}} \right)} \right)\left( {\left( {{{bj} \over q}} \right)} \right),} } $$

respectively, where

$((x)) = \left\{ \begin{gathered} x - [x] - \tfrac{1} {2},if x is not an integer; \hfill \\ 0,if x is an integer. \hfill \\ \end{gathered} \right. $

The Knopp identities for the classical and the homogeneous Dedekind sum were the following:

$$\sum\limits_{d|n} {\sum\limits_{r = 1}^d {s\left( {{n \over d}a + rq,dq} \right) = \sigma (n)s(a,q),} } $$
$$\sum\limits_{d|n} {\sum\limits_{{r_1} = 1}^d {\sum\limits_{{r_2} = 1}^d s \left( {{n \over d}a + {r_1}q,{n \over d}b + {r_2}q,dq} \right) = n\sigma (n)s(a,b,q),} } $$

where σ(n) =Σ d|n d.

In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Apostol: Modular Functions and Dirichlet Series in Number Theory. Springer, New York, Heidelberg, Berlin, 1976.

    Book  MATH  Google Scholar 

  2. B.C. Berndt: Analytic Eisentein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304 (1978), 332–365.

    MathSciNet  Google Scholar 

  3. B.C. Berndt, L.A. Goldberg: Analytic properties of arithmetic sums arising in the theory of the classical theta-functions. SIAM J. Math. Anal. 15 (1984), 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  4. L.A. Goldberg: An elementary proof of the Petersson-Knopp theorem on Dedekind sums. J. Number Theory 12 (1980), 541–542.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.R. Hall, M.N. Huxley: Dedekind sums and continued fractions. Acta Arith. 63 (1993), 79–90.

    MathSciNet  MATH  Google Scholar 

  6. M. I. Knopp: Hecke operators and an identity for the Dedekind sums. J. Number Theory 12 (1980), 2–9.

    Article  MathSciNet  MATH  Google Scholar 

  7. L.A. Parson: Dedekind sums and Hecke operators. Math. Proc. Camb. Philos. Soc. 88 (1980), 11–14.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.R. Pettet, R. Sitaramachandrarao: Three-term relations for Hardy sums. J. Number Theory 25 (1987), 328–339.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Rademacher, E. Grosswald: Dedekind Sums. The Carus Mathematical Monographs No. 16, The Mathematical Association of America, Washington, D.C., 1972.

    Google Scholar 

  10. R. Sitaramachandrarao: Dedekind and Hardy sums. Acta Arith. 48 (1987), 325–340.

    MathSciNet  MATH  Google Scholar 

  11. W. Zhang: On a Cochrane sum and its hybrid mean value formula. J. Math. Anal. Appl. 267 (2002), 89–96.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Zhang: On a Cochrane sum and its hybrid mean value formula. II. J. Math. Anal. Appl. 276 (2002), 446–457.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Zhang, H. Liu: A note on the Cochrane sum and its hybrid mean value formula. J. Math. Anal. Appl. 288 (2003), 646–659.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Zhang, Y. Yi: On the upper bound estimate of Cochrane sums. Soochow J. Math. 28 (2002), 297–304.

    MathSciNet  MATH  Google Scholar 

  15. Z. Zheng: On an identity for Dedekind sums. Acta Math. Sin. 37 (1994), 690–694.

    MATH  Google Scholar 

  16. Z. Zheng: The Petersson-Knopp identity for homogeneous Dedekind sums. J. Number Theory 57 (1996), 223–230.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaning Liu.

Additional information

Supported by the National Natural Science Foundation of China under Grant No. 10901128, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20090201120061, and the Fundamental Research Funds for the Central University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Gao, J. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums. Czech Math J 62, 1147–1159 (2012). https://doi.org/10.1007/s10587-012-0069-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0069-7

Keywords

MSC 2010

Navigation