Skip to main content

Advertisement

Log in

Integrals and Banach spaces for finite order distributions

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let B c denote the real-valued functions continuous on the extended real line and vanishing at −∞. Let B r denote the functions that are left continuous, have a right limit at each point and vanish at −∞. Define A n c to be the space of tempered distributions that are the nth distributional derivative of a unique function in B c . Similarly with A n r from B r . A type of integral is defined on distributions in A n c and A n r . The multipliers are iterated integrals of functions of bounded variation. For each n ∈ ℕ, the spaces A n c and A n r are Banach spaces, Banach lattices and Banach algebras isometrically isomorphic to B c and B r , respectively. Under the ordering in this lattice, if a distribution is integrable then its absolute value is integrable. The dual space is isometrically isomorphic to the functions of bounded variation. The space A 1 c is the completion of the L 1 functions in the Alexiewicz norm. The space A 1 r contains all finite signed Borel measures. Many of the usual properties of integrals hold: Hölder inequality, second mean value theorem, continuity in norm, linear change of variables, a convergence theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alexiewicz: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289–293.

    MathSciNet  MATH  Google Scholar 

  2. C. D. Aliprantis, K. C Border: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin, 2006.

    MATH  Google Scholar 

  3. L. Ambrosio, N. Fusco, D. Pallara: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford: Clarendon Press, 2000.

    MATH  Google Scholar 

  4. S. Axler, P. Bourdon, W. Ramey: Harmonic Function Theory. Springer, New York, 2001.

    MATH  Google Scholar 

  5. J. C. Burkill: An integral for distributions. Proc. Camb. Philos. Soc. 53 (1957), 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. G. Čelidze, A. G. Džvaršeĭšvili: The Theory of the Denjoy Integral and Some Applications. Transl. from the Russian by P. S. Bullen. World Scientific, Singapore, 1989.

    Google Scholar 

  7. A. G. Das, G. Sahu: An equivalent Denjoy type definition of the generalized Henstock Stieltjes integral. Bull. Inst. Math., Acad. Sin. 30 (2002), 27–49.

    MathSciNet  MATH  Google Scholar 

  8. N. Dunford, J. T. Schwartz: Linear Operators. Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Repr. of the orig., publ. 1959 by John Wiley & Sons Ltd., Paperback ed. New York etc.: John Wiley & Sons Ltd. xiv, 1988.

    Google Scholar 

  9. R. J. Fleming, J. E. Jamison: Isometries on Banach Spaces: Function spaces. Chapman and Hall, Boca Raton, 2003.

    MATH  Google Scholar 

  10. G. B. Folland: Real Analysis. Modern Techniques and Their Applications. 2nd ed. Wiley, New York, 1999.

    MATH  Google Scholar 

  11. D. Fraňkova: Regulated functions. Math. Bohem. 116 (1991), 20–59.

    MathSciNet  MATH  Google Scholar 

  12. F. G. Friedlander, M. Joshi: Introduction to the Theory of Distributions. Cambridge etc.: Cambridge University Press. III, 1982.

    MATH  Google Scholar 

  13. R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. American Mathematical Society, Providence, 1994.

    MATH  Google Scholar 

  14. E. Kaniuth: A Course in Commutative Banach Algebras. Springer, New York, 2009.

    Book  MATH  Google Scholar 

  15. R. Kannan, C. K. Krueger: Advanced Analysis on the Real Line. Springer, New York, 1996.

    MATH  Google Scholar 

  16. P. Y. Lee, R. Vyborny: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  17. S. Mac Lane, G. Birkhoff: Algebra. Macmillan, New York, 1979.

    Google Scholar 

  18. R. M. McLeod: The Generalized Riemann Integral. The Mathematical Association of America, Washington, 1980.

    MATH  Google Scholar 

  19. J. Mikusiński, R. Sikorski: The elementary theory of distributions. I. Rozprawy Mat. 12 (1957), 52 pp.

  20. J. A. Musielak: A note on integrals of distributions. Pr. Mat. 8 (1963), 1–7.

    MathSciNet  MATH  Google Scholar 

  21. M. Oberguggenberger: Multiplication of Distributions and Applications to Partial Differential Equations. Longman Scientific and Technical, Harlow, 1992.

    MATH  Google Scholar 

  22. A. M. Russell: Necessary and sufficient conditions for the existence of a generalized Stieltjes integral. J. Aust. Math. Soc., Ser. A 26 (1978), 501–510.

    Article  MATH  Google Scholar 

  23. L. Schwartz: Thèorie des Distributions. Nouvelle ed., entie’rement corr., refondue et augm. Hermann, Paris, 1978. (In French.)

    MATH  Google Scholar 

  24. R. Sikorski: Integrals of distributions. Stud. Math. 20 (1961), 119–139.

    MathSciNet  MATH  Google Scholar 

  25. E. Talvila: Limits and Henstock integrals of products. Real Anal. Exch. 25 (1999/2000), 907–918.

    MathSciNet  Google Scholar 

  26. E. Talvila: The distributional Denjoy integral. Real Anal. Exch. 33 (2008), 51–82.

    MathSciNet  MATH  Google Scholar 

  27. E. Talvila: Convolutions with the continuous primitive integral. Abstr. Appl. Anal. 2009 (2009), 18 pp.

  28. E. Talvila: The regulated primitive integral. Ill. J. Math. 53 (2009), 1187–1219.

    MathSciNet  MATH  Google Scholar 

  29. B. S. Thomson: Characterizations of an indefinite Riemann integral. Real Anal. Exch. 35 (2010), 487–492.

    MathSciNet  MATH  Google Scholar 

  30. A. H. Zemanian: Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, slightly corrected. Dover Publications, New York, 1987.

    MATH  Google Scholar 

  31. W. P. Ziemer: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Talvila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talvila, E. Integrals and Banach spaces for finite order distributions. Czech Math J 62, 77–104 (2012). https://doi.org/10.1007/s10587-012-0018-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0018-5

Keywords

MSC 2010

Navigation