Skip to main content
Log in

The growth of Dirichlet series

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We define Knopp-Kojima maximum modulus and the Knopp-Kojima maximum term of Dirichlet series on the right half plane by the method of Knopp-Kojima, and discuss the relation between them. Then we discuss the relation between the Knopp-Kojima coefficients of Dirichlet series and its Knopp-Kojima order defined by Knopp-Kojima maximum modulus. Finally, using the above results, we obtain a relation between the coefficients of the Dirichlet series and its Ritt order. This improves one of Yu Jia-Rong’s results, published in Acta Mathematica Sinica 21 (1978), 97–118. We also give two examples to show that the condition under which the main result holds can not be weakened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Blambert: Sur la notion de type de l’ordre d’une fonction entière. Ann. Sci. Éc. Norm. Supér, III. Sér. 79 (1962), 353–375. (In French.)

    MathSciNet  MATH  Google Scholar 

  2. H. Bohr: Collected Mathematical Works. Copenhagen, 1952, pp. 992.

  3. K. Knopp: Über de Konvergenzabszisse des Laplace-Integrals. Math. Z. 54 (1951), 291–296. (In German.)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Mandelbrojt: Séries de Dirichlet. Principle et Méthodes, Paris, Gauthier-Villars, 1969, pp. 165. (In French.)

    MATH  Google Scholar 

  5. S. Izumi: Integral functions defined by Dirichlet’s series. Japanese Journ. of Math. 6 (1929), 199–204.

    Google Scholar 

  6. J. F. Ritt: On certain points in the theory of Dirichlet series. Amer. J. 50 (1928), 73–86.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Sugimura: Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen. M. Z. 29 (1928), 264–277. (In German.)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Tanaka: Note on Dirichlet series. V: On the integral functions defined by Dirichlet series. (I.). Tôhoku Math. J., II. Ser. 5 (1953), 67–78.

    Article  MATH  Google Scholar 

  9. G. Valiron: Sur la croissance du module maximum des séries enti`eres. S. M. F. Bull. 44 (1916), 45–64. (In French.)

    MathSciNet  MATH  Google Scholar 

  10. G. Valiron: Sur l’abscisse de convergence des séries de Dirichlet. S. M. F. Bull. 52 (1924), 166–174. (In French.)

    MathSciNet  MATH  Google Scholar 

  11. G. Valiron: Entire functions and Borel’s directions. Proc. Natl. Acad. Sci. USA 20 (1934), 211–215.

    Article  Google Scholar 

  12. G. Valiron: Théorie Générale des Séries de Dirichlet. Paris, Gauthier-Villars (Mémorial des sciences mathématiques, fasc. 17) (1926), pp. 56. (In French.)

  13. Ch.-Y. Yu: Dirichlet series, Analytic functions of one complex variable. Contemp. Math., 48, Amer. Math. Soc.,Providence, RI (1985), 201–216.

  14. Ch.-Y. Yu: Sur les droites de Borel de certaines fonctions enti`eres. Ann. Sci. Éc. Norm. Supér, III. Sér. 68 (1951), 65–104. (In French.)

    MATH  Google Scholar 

  15. J.-R. Yu: Some properties of random Dirichlet series. Acta Math. Sin. 21 (1978), 97–118. (In Chinese.)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhendong Gu.

Additional information

Research was supported by the National Natural Science Foundation of China No. 11101096.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Z., Sun, D. The growth of Dirichlet series. Czech Math J 62, 29–38 (2012). https://doi.org/10.1007/s10587-012-0014-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-012-0014-9

Keywords

MSC 2010

Navigation