Skip to main content
Log in

Uncertainty principles for the weinstein transform

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi’s theorem, Beurling’s theorem, and Donoho-Stark’s uncertainty principle are obtained for the Weinstein transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Ben Nahia, N. Ben Salem: Spherical harmonics and applications associated with the Weinstein operator. Potential Theory-Proc. ICPT 94 (J. Král et al., eds.). 1996, pp. 235–241.

  2. Z. Ben Nahia, N. Ben Salem: On a mean value property associated with the Weinstein operator. Potential Theory-Proc. ICPT 94 (J. Král et al., eds.). 1996, pp. 243–253.

  3. M. Benedicks: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106 (1985), 180–183.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Beurling: The Collected Works of Arne Beurling, Vol. 1, Vol. 2 (L. Carleson, P. Malliavin, J. Neuberger, J. Wermen, eds.). Birkhäuser, Boston, 1989.

    Google Scholar 

  5. M. Brelot: Equation de Weinstein et potentiels de Marcel Riesz. Lect. Notes Math. 681. Séminaire de Théorie de Potentiel Paris, No. 3. 1978, pp. 18–38. (In French.)

  6. A. Bonami, B. Demange, P. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19 (2003), 22–35.

    MathSciNet  Google Scholar 

  7. M. G. Cowling, J. F. Price: Generalisations of Heisenberg’s Inequality. Lect. Notes Math., Vol. 992. Springer, Berlin, 1983, pp. 443–449.

    Google Scholar 

  8. R. Daher, T. Kawazoe, H. Mejjaoli: A generalization of Miyachi’s theorem. J. Math. Soc. Japan 61 (2009), 551–558.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. L. Donoho, P. B. Stark: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49 (1989), 906–931.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. H. Hardy: A theorem concerning Fourier transform. J. Lond. Math. Soc. 8 (1933), 227–231.

    Article  Google Scholar 

  11. L. Hörmander: A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat. 29 (1991), 237–240.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Mejjaoli, K. Trimèche: An analogue of Hardy’s theorem and its L p-version for the Dunkl-Bessel transform. J. Concr. Appl. Math. 2 (2004), 397–417.

    MathSciNet  MATH  Google Scholar 

  13. H. Mejjaoli: An analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform. Fract. Calc. Appl. Anal. 9 (2006), 247–264.

    MathSciNet  MATH  Google Scholar 

  14. H. Mejjaoli, K. Trimèche: A variant of Cowling-Price’s theorem for the Dunkl transform on ℝ. J. Math. Anal. Appl. 345 (2008), 593–606.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Mejjaoli: Global well-posedness and scattering for a class of nonlinear Dunkl-Schrödinger equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1121–1139.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Mejjaoli: Nonlinear Dunkl-wave equations. Appl. Anal. 89 (2010), 1645–1668.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Miyachi: A generalization of theorem of Hardy. Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan 1997.

    Google Scholar 

  18. G. W. Morgan: A note on Fourier transforms. J. Lond. Math. Soc. 9 (1934), 188–192.

    Article  Google Scholar 

  19. S. Parui, R. P. Sarkar: Beurling’s theorem and L p-L q Morgan’s theorem for step two nilpotent Lie groups. Publ. Res. Inst. Math. Sci. 44 (2008), 1027–1056.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Pfannschmidt: A generalization of the theorem of Hardy: A most general version of the uncertainty principle for Fourier integrals. Math. Nachr. 182 (1996), 317–327.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. K. Ray, R. P. Sarkar: Cowling-Price theorem and characterization of heat kernel on symmetric spaces. Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004), 159–180.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Slepian, H. O. Pollak: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell. System Tech. J. 40 (1961), 43–63.

    MathSciNet  MATH  Google Scholar 

  23. D. Slepian: Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions, generalized prolate spheroidal functions. Bell. System Tech. J. 43 (1964), 3009–3057.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Mejjaoli.

Additional information

Dedicated to Khalifa Trimèche for his 65 birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejjaoli, H., Salhi, M. Uncertainty principles for the weinstein transform. Czech Math J 61, 941–974 (2011). https://doi.org/10.1007/s10587-011-0061-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-011-0061-7

Keywords

MSC 2010

Navigation