Skip to main content
Log in

A simple regularization method for the ill-posed evolution equation

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The nonhomogeneous backward Cauchy problem

$$ u_t + Au(t) = f(t),u(T) = \phi $$

where A is a positive self-adjoint unbounded operator which has continuous spectrum and f is a given function being given is regularized by the well-posed problem. New error estimates of the regularized solution are obtained. This work extends earlier results by N. Boussetila and by M. Denche and S. Djezzar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Ames, R. J. Hughes: Structural stability for ill-posed problems in Banach space. Semigroup Forum 70 (2005), 127–145.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Boussetila, F. Rebbani: Optimal regularization method for ill-posed Cauchy problems. Electron. J. Differ. Equ. 147 (2006), 1–15.

    MathSciNet  Google Scholar 

  3. G.W. Clark, S.F. Oppenheimer: Quasireversibility methods for non-well posed problems. Electron. J. Diff. Eqns. 1994 (1994), 1–9.

    Google Scholar 

  4. M. Denche, K. Bessila: A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301 (2005), 419–426.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Denche, S. Djezzar: A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems. Bound. Value Probl. 2006, Article ID 37524 (2006), 1–8.

  6. L. Eldén, F. Berntsson, T. Reginska: Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput. 21 (2000), 2187–2205.

    Article  MATH  MathSciNet  Google Scholar 

  7. C.-L. Fu, X.-T. Xiong, P. Fu: Fourier regularization method for solving the surface heat flux from interior observations. Math. Comput. Modelling 42 (2005), 489–498.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.-L. Fu: Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J. Comput. Appl. Math. 167 (2004), 449–463.

    Article  MATH  MathSciNet  Google Scholar 

  9. C.-L. Fu, X.-T. Xiang, Z. Qian: Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331 (2007), 472–480.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Gajewski, K. Zaccharias: Zur regularisierung einer klass nichtkorrekter probleme bei evolutiongleichungen. J. Math. Anal. Appl. 38 (1972), 784–789.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. N. Hào, N. Van Duc, H. Sahli: A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345 (2008), 805–815.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Huang, Q. Zheng: Regularization for a class of ill-posed Cauchy problems. Proc. Am. Math. Soc. 133 (2005), 3005–3012.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Lattès, J.-L. Lions: Méthode de Quasi-réversibilité et Applications. Dunod, Paris, 1967. (In French.)

    MATH  Google Scholar 

  14. N. T. Long, A. Pham Ngoc Ding: Approximation of a parabolic nonlinear evolution equation backwards in time. Inverse Probl. 10 (1994), 905–914.

    Article  MATH  Google Scholar 

  15. I. V. Mel’nikova, A. I. Filinkov: Abstract Cauchy problems: Three approaches. Monograph and Surveys in Pure and Applied Mathematics, Vol. 120. Chapman & Hall/CRC, London-New York/Boca Raton, 2001.

    Book  Google Scholar 

  16. K. Miller: Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems. Sympos. non-well posed probl. logarithmic convexity. Lect. Notes Math. Vol. 316. Springer, Berlin, 1973, pp. 161–176.

    Chapter  Google Scholar 

  17. L. E. Payne: Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia, 1975.

    MATH  Google Scholar 

  18. A. Pazy: Semigroups of Linear Operators and Application to Partial Differential Equations. Springer, New York, 1983.

    Google Scholar 

  19. R. E. Showalter: The final value problem for evolution equations. J. Math. Anal. Appl. 47 (1974), 563–572.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. E. Showalter: Quasi-reversibility of first and second order parabolic evolution equations. Improp. Posed Bound. Value Probl. (Conf. Albuquerque, 1974). Res. Notes in Math., No. 1. Pitman, London, 1975, pp. 76–84.

    Google Scholar 

  21. U. Tautenhahn, T. Schröter: On optimal regularization methods for the backward heat equation. Z. Anal. Anwend. 15 (1996), 475–493.

    MATH  Google Scholar 

  22. U. Tautenhahn: Optimality for ill-posed problems under general source conditions. Numer. Funct. Anal. Optimization 19 (1998), 377–398.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. D. Trong, N. H. Tuan: Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems. Electron. J. Differ. Equ. No 84 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Huy Tuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuan, N.H., Trong, D.D. A simple regularization method for the ill-posed evolution equation. Czech Math J 61, 85–95 (2011). https://doi.org/10.1007/s10587-011-0019-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-011-0019-9

Keywords

MSC 2010

Navigation