Skip to main content
Log in

A cohomological steinness criterion for holomorphically spreadable complex spaces

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X be a complex space of dimension n, not necessarily reduced, whose cohomology groups H 1(X, \( \mathcal{O} \)), ...,H n−1(X, \( \mathcal{O} \)) are of finite dimension (as complex vector spaces). We show that X is Stein (resp., 1-convex) if, and only if, X is holomorphically spreadable (resp., X is holomorphically spreadable at infinity).

This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for 1-convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Alessandrini: On the cohomology of a holomorphically separable complex analytic space. Bolletino U.M.I. 1-A (1982), 261–208.

    MathSciNet  Google Scholar 

  2. C. Bǎnicǎ and O. Stǎnšilǎ: Sur les ouverts de Stein dans un espace complexe. C.R. Acad. Sci. Paris Sér. A-B 268 (1969), 1024–1027.

    Google Scholar 

  3. S. Coen: Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein. Compositio Math. 37 (1978), 63–75.

    MATH  MathSciNet  Google Scholar 

  4. J.-E. Fornæss and R. Narasimhan: The Levi problem on complex spaces with singularities. Math. Ann. 248 (1980), 47–72.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Forster: Some remarks on parallelizable Stein manifolds. Bull. Amer. Math. Soc. 73 (1967), 712–716.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Grauert: Characterisierung der holomorph-vollständigen komplexen Räume. Math. Ann. 129 (1955), 233–259.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.-C. Gunning and R. Narasimhan: Immersion of open Riemann surfaces. Math. Ann. 174 (1967), 103–108.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.-C. Gunning and H. Rossi: Analytic functions of several complex variables. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.

    MATH  Google Scholar 

  9. R.-C. Gunning: Introduction to Holomorphic Functions of Several Variables, vol. III. Wadsworth & Brokes, 1990.

  10. B. Kaup and L. Kaup: Holomorphic functions of several variables. An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin, 1983.

  11. N.V. Khue: Stein morphisms and Riemann domains over Stein spaces. Acta Math. Vietnam. 10 (1985), 75–92.

    MathSciNet  Google Scholar 

  12. H. Laufer: On sheaf cohomology and envelopes of holomorphy. Ann. Math. 84 (1966), 102–118.

    Article  MathSciNet  Google Scholar 

  13. R. Narasimhan: The Levi problem for complex spaces II. Math. Ann. 146 (1962), 195–216.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Narasimhan: Complex analysis in one variable. Birkhäuser, 1985.

  15. G. Scheja: Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung. Math. Ann. 157 (1964), 75–94.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.-P. Serre: Quelques problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles. Georges Thone, Lige; Masson & Cie, Paris, 1953, pp. 57–68.

  17. R.R. Simha: On Siu’s characterisation of domains of holomorphy. J. Indian Math. Soc. 42 (1978), 1–4, 127–130.

    MATH  MathSciNet  Google Scholar 

  18. Y.-T. Siu: Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy. Math. Z. 102 (1967), 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  19. Y.-T. Siu: Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces. Trans. Amer. Math. Soc. 143 (1969), 77–94.

    MATH  MathSciNet  Google Scholar 

  20. Y.-T. Siu: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38 (1976), 89–100.

    Article  MATH  MathSciNet  Google Scholar 

  21. Y.-T. Siu and G. Trautmann: Gap sheaves and extension of coherent analytic subsheaves. Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  22. V. Vâjâitu: A characterization of 1-convexity. J. Math. Pures Appl. 84 (2005), 179–197.

    Google Scholar 

  23. K.-W. Wiegmann: Über Quotienten holomorph-konvexer Räume. Math. Z. 97 (1967), 251–258.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Vâjâitu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vâjâitu, V. A cohomological steinness criterion for holomorphically spreadable complex spaces. Czech Math J 60, 655–667 (2010). https://doi.org/10.1007/s10587-010-0060-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-010-0060-0

Keywords

MSC 2010

Navigation