Skip to main content
Log in

An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bartle: Return to the Riemann integral. Am. Math. Mon. 103 (1996), 625–632.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Bugajewska: On the equation of nth order and the Denjoy integral. Nonlinear Anal. 34 (1998), 1111–1115.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Bugajewska and D. Bugajewski: On nonlinear integral equations and nonabsolute convergent integrals. Dyn. Syst. Appl. 14 (2005), 135–148.

    MATH  MathSciNet  Google Scholar 

  4. D. Bugajewski and S. Szufla: On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. 35 (1995), 61–69.

    MATH  MathSciNet  Google Scholar 

  5. T. Chew and F. Flordeliza: On x′ = f(t, x) and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861–868.

    MATH  MathSciNet  Google Scholar 

  6. R. Henstock: Definitions of Riemann type of the variational integral. Proc. Lond. Math. Soc. 11 (1961), 404–418.

    Google Scholar 

  7. R. Henstock: The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford, 1991.

    MATH  Google Scholar 

  8. J. Kurzweil: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter. Czech. Math. J. 7 (1957), 418–449.

    MathSciNet  Google Scholar 

  9. R. McLeod: The Generalized Riemann Integral. Carus Math. Monogr., no. 20, Mathematical Association of America, Washington, 1980.

    MATH  Google Scholar 

  10. J. Munkres: Analysis on Manifolds. Addison-Wesley Publishing Company, Redwood City, CA, 1991.

    MATH  Google Scholar 

  11. W. Pfeffer: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665–685.

    MATH  MathSciNet  Google Scholar 

  12. W. Pfeffer: The multidimensional fundamental theorem of calculus. J. Austral. Math. Soc. (Ser. A) 43 (1987), 143–170.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Rudin: Principles of Mathematical Analysis. Third Ed., McGraw-Hill, New York, 1976.

    MATH  Google Scholar 

  14. W. Rudin: Real and Complex Analysis. McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  15. Š. Schwabik: The Perron integral in ordinary differential equations. Differ. Integral Equ. 6 (1993), 863–882.

    MATH  MathSciNet  Google Scholar 

  16. M. Spivak: Calculus on Manifolds. W. A. Benjamin, Menlo Park, CA, 1965.

    MATH  Google Scholar 

  17. K. Stromberg: An Introduction to Classical Real Analysis. Waldworth, Inc, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, T. An elementary proof of the theorem that absolute gauge integrability implies Lebesgue integrability. Czech Math J 60, 621–633 (2010). https://doi.org/10.1007/s10587-010-0058-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-010-0058-7

Keywords

MSC 2010

Navigation