Skip to main content
Log in

Going down in (semi)lattices of finite moore families and convex geometries

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set—ordered by set inclusion—is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset P is the only convex geometry having a poset of join-irreducible elements isomorphic to P if and only if the width of P is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Barbut and B. Monjardet: Ordre et Classification, Algèbre et Combinatoire, tomes I–II. Hachette, Paris, 1970.

    MATH  Google Scholar 

  2. J. Berman and G. Bordalo: Finite distributive lattices and doubly irreducible elements. Disc. Math. 178 (1998), 237–243.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Bordalo and B. Monjardet: Reducible classes of finite lattices. Order 13 (1996), 379–390.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Bordalo and B. Monjardet: The lattice of strict completions of a finite poset. Alg. Univ. 47 (2002), 183–200.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Bordalo and B. Monjardet: Finite orders and their minimal strict completion lattices. Discuss. Math. Gen. Algebra Appl. 23 (2003), 85–100.

    MATH  MathSciNet  Google Scholar 

  6. N. Caspard: A characterization theorem for the canonical basis of a closure operator. Order 16 (1999), 227–230.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Caspard and B. Monjardet: The lattice of closure systems, closure operators and implicational systems on a finite set: a survey. Disc. Appl. Math. 127 (2003), 241–269.

    Article  MATH  MathSciNet  Google Scholar 

  8. N. Caspard and B. Monjardet: Some lattices of closure systems. Disc. Math. Theor. Comput. Sci. 6 (2004), 163–190.

    MATH  MathSciNet  Google Scholar 

  9. J. Chacron: Nouvelles correspondances de Galois. Bull. Soc. Math. Belgique 23 (1971), 167–178.

    MATH  MathSciNet  Google Scholar 

  10. B. A. Davey and H. A. Priestley: Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  11. R. P. Dilworth: Lattices with unique irreducible representations. Ann. of Math. 41 (1940), 771–777.

    Article  MathSciNet  Google Scholar 

  12. P. H. Edelman and R. E. Jamison: The theory of convex geometries. Geom. Dedicata 19 (1985), 247–270.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Erné: Bigeneration in complete lattices and principal separation in ordered sets. Order 8 (1991), 197–221.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Lorrain: Notes on topological spaces with minimum neighborhoods. Amer. Math. Monthly 76 (1969), 616–627.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Monjardet: The consequences of Dilworth’s work on lattices with unique irreducible decompositions (Bogart, K.P., Freese, R., Kung, J., eds.). The Dilworth theorems. Selected papers of Robert P. Dilworth. Birkhaüser, Boston, 1990, pp. 192–201.

    Google Scholar 

  16. B. Monjardet and V. Raderanirina: The duality between the anti-exchange closure operators and the path independent choice operators on a finite set. Math. Social Sci. 41 (2001), 131–150.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. B. Nation and A. Pogel: The lattice of completions of an ordered set. Order 14 (1997), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Niederle: Boolean and distributive ordered sets: characterization and representation by sets. Order 12 (1995), 189–210.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Nourine: Private communication. 2003.

  20. O. Öre: Some studies on closure relations. Duke Math. J. 10 (1943), 761–785.

    Article  MathSciNet  Google Scholar 

  21. I. Rabinovitch and I. Rival: The rank of a distributive lattice. Disc. Math. 25 (1979), 275–279.

    Article  MATH  MathSciNet  Google Scholar 

  22. N. Reading: Order dimension, strong Bruhat order and lattice properties for posets. Order 19 (2002), 73–100.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Schmid: Quasiorders and sublattices of distributive lattices. Order 19 (2002), 11–34.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Wild: A theory of finite closure spaces based on implications. Adv. Math. 108 (1994), 118–139.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bordalo Gabriela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriela, B., Nathalie, C. & Bernard, M. Going down in (semi)lattices of finite moore families and convex geometries. Czech Math J 59, 249–271 (2009). https://doi.org/10.1007/s10587-009-0018-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0018-2

Keywords

MSC 2000

Navigation