Skip to main content
Log in

On the structure of a Morse form foliation

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The foliation of a Morse form ω on a closed manifold M is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of M and ω. Conditions for the presence of minimal components and homologically non-trivial compact leaves are given in terms of rk ω and Sing ω. The set of the ranks of all forms defining a given foliation without minimal components is described. It is shown that if ω has more centers than conic singularities then b 1(M) = 0 and thus the foliation has no minimal components and homologically non-trivial compact leaves, its folitation graph being a tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Arnoux and G. Levitt: Sur l’unique ergodicité des 1-formes fermées singulières. Invent. Math. 84 (1986), 141–156.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Farber, G. Katz and J. Levine: Morse theory of harmonic forms. Topology 37 (1998), 469–483.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Gelbukh: Presence of minimal components in a Morse form foliation. Diff. Geom. Appl. 22 (2005), 189–198.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Gelbukh: Ranks of collinear Morse forms. Submitted.

  5. F. Harary: Graph theory. Addison-Wesley Publ. Comp., Massachusetts, 1994.

    Google Scholar 

  6. K. Honda: A note on Morse theory of harmonic 1-forms. Topology 38 (1999), 223–233.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Imanishi: On codimension one foliations defined by closed one forms with singularities. J. Math. Kyoto Univ. 19 (1979), 285–291.

    MATH  MathSciNet  Google Scholar 

  8. A. Katok: Invariant measures of flows on oriented surfaces. Sov. Math. Dokl. d14 (1973), 1104–1108.

    Google Scholar 

  9. G. Levitt: 1-formes fermées singulières et groupe fondamental. Invent. Math. 88 (1987), 635–667.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Levitt: Groupe fondamental de l’espace des feuilles dans les feuilletages sans holonomie. J. Diff. Geom. 31 (1990), 711–761.

    MATH  MathSciNet  Google Scholar 

  11. I. Mel’nikova: A test for non-compactness of the foliation of a Morse form. Russ. Math. Surveys 50 (1995), 444–445.

    Article  MATH  MathSciNet  Google Scholar 

  12. I. Mel’nikova: Maximal isotropic subspaces of skew-symmetric bilinear map. Vestnik MGU 4 (1999), 3–5.

    MathSciNet  Google Scholar 

  13. S. Novikov: The Hamiltonian formalism and a multivalued analog of Morse theory. Russian Math. Surveys 37 (1982), 1–56.

    Article  MATH  Google Scholar 

  14. A. Pazhitnov: The incidence coefficients in the Novikov complex are generically rational functions. Sankt-Petersbourg Math. J. 9 (1998), 969–1006.

    MathSciNet  Google Scholar 

  15. D. Tischler: On fibering certain foliated manifolds over S 1. Topology 9 (1970), 153–154.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gelbukh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelbukh, I. On the structure of a Morse form foliation. Czech Math J 59, 207–220 (2009). https://doi.org/10.1007/s10587-009-0015-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0015-5

Keywords

MSC 2000

Navigation